Cargando…

Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis

We aimed to construct and validate nomogram models that predict the incidence of lung metastasis (LM) in patients with renal cell carcinoma (RCC) and evaluate overall survival (OS) and cancer-specific survival (CSS) among RCC patients with LM. The Surveillance, Epidemiology, and End Results database...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhaoxiang, Yang, Cheng, He, Wei, Zhou, Jun, Xiang, Rong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259154/
https://www.ncbi.nlm.nih.gov/pubmed/35801802
http://dx.doi.org/10.1097/MD.0000000000029764
_version_ 1784741711478521856
author Lu, Zhaoxiang
Yang, Cheng
He, Wei
Zhou, Jun
Xiang, Rong
author_facet Lu, Zhaoxiang
Yang, Cheng
He, Wei
Zhou, Jun
Xiang, Rong
author_sort Lu, Zhaoxiang
collection PubMed
description We aimed to construct and validate nomogram models that predict the incidence of lung metastasis (LM) in patients with renal cell carcinoma (RCC) and evaluate overall survival (OS) and cancer-specific survival (CSS) among RCC patients with LM. The Surveillance, Epidemiology, and End Results database was analyzed for RCC patients diagnosed between 2010 and 2015. The X-tile program was used to determine the best cutoff values for age at initial diagnosis and tumor size. Logistic regression analysis was performed to explore independent risk factors for LM, and COX regression analysis was used to identify prognostic indicators for OS and CSS in lung metastatic RCC patients. Subsequently, 3 nomograms were established, and receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were utilized to validate their accuracy. We randomly assigned 10,929 patients with RCC to 2 groups with 1:1 allocation. Multivariate logistic analyses revealed that pathology, tumor (T) stage, nodes (N) stage, race, grade, surgery, metastatic sites, and tumor size were independent risk factors for LM. Multivariate Cox analyses showed that pathology, T stage, N stage, age, surgery, metastatic sites, and residence were independent prognostic factors for OS and CSS in patients with LM. Then, nomograms were developed based on the multivariate logistic and Cox regression analyses results. The ROC and DCA curves confirmed that these nomograms achieved satisfactory discriminative power. Three effective nomograms were constructed and validated that can be used to assist clinicians in predicting the incidence of LM and evaluating the prognosis of lung metastatic RCC.
format Online
Article
Text
id pubmed-9259154
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Lippincott Williams & Wilkins
record_format MEDLINE/PubMed
spelling pubmed-92591542022-07-08 Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis Lu, Zhaoxiang Yang, Cheng He, Wei Zhou, Jun Xiang, Rong Medicine (Baltimore) Research Article We aimed to construct and validate nomogram models that predict the incidence of lung metastasis (LM) in patients with renal cell carcinoma (RCC) and evaluate overall survival (OS) and cancer-specific survival (CSS) among RCC patients with LM. The Surveillance, Epidemiology, and End Results database was analyzed for RCC patients diagnosed between 2010 and 2015. The X-tile program was used to determine the best cutoff values for age at initial diagnosis and tumor size. Logistic regression analysis was performed to explore independent risk factors for LM, and COX regression analysis was used to identify prognostic indicators for OS and CSS in lung metastatic RCC patients. Subsequently, 3 nomograms were established, and receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were utilized to validate their accuracy. We randomly assigned 10,929 patients with RCC to 2 groups with 1:1 allocation. Multivariate logistic analyses revealed that pathology, tumor (T) stage, nodes (N) stage, race, grade, surgery, metastatic sites, and tumor size were independent risk factors for LM. Multivariate Cox analyses showed that pathology, T stage, N stage, age, surgery, metastatic sites, and residence were independent prognostic factors for OS and CSS in patients with LM. Then, nomograms were developed based on the multivariate logistic and Cox regression analyses results. The ROC and DCA curves confirmed that these nomograms achieved satisfactory discriminative power. Three effective nomograms were constructed and validated that can be used to assist clinicians in predicting the incidence of LM and evaluating the prognosis of lung metastatic RCC. Lippincott Williams & Wilkins 2022-07-08 /pmc/articles/PMC9259154/ /pubmed/35801802 http://dx.doi.org/10.1097/MD.0000000000029764 Text en Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc. https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC) (https://creativecommons.org/licenses/by-nc/4.0/) , where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.
spellingShingle Research Article
Lu, Zhaoxiang
Yang, Cheng
He, Wei
Zhou, Jun
Xiang, Rong
Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis
title Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis
title_full Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis
title_fullStr Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis
title_full_unstemmed Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis
title_short Nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: A large cohort analysis
title_sort nomogram to predict risk and prognosis of synchronous lung metastasis in renal cell carcinoma: a large cohort analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259154/
https://www.ncbi.nlm.nih.gov/pubmed/35801802
http://dx.doi.org/10.1097/MD.0000000000029764
work_keys_str_mv AT luzhaoxiang nomogramtopredictriskandprognosisofsynchronouslungmetastasisinrenalcellcarcinomaalargecohortanalysis
AT yangcheng nomogramtopredictriskandprognosisofsynchronouslungmetastasisinrenalcellcarcinomaalargecohortanalysis
AT hewei nomogramtopredictriskandprognosisofsynchronouslungmetastasisinrenalcellcarcinomaalargecohortanalysis
AT zhoujun nomogramtopredictriskandprognosisofsynchronouslungmetastasisinrenalcellcarcinomaalargecohortanalysis
AT xiangrong nomogramtopredictriskandprognosisofsynchronouslungmetastasisinrenalcellcarcinomaalargecohortanalysis