Cargando…

Learning-to-augment incorporated noise-robust deep CNN for detection of COVID-19 in noisy X-ray images

Deep convolutional neural networks (CNNs) are used for the detection of COVID-19 in X-ray images. The detection performance of deep CNNs may be reduced by noisy X-ray images. To improve the robustness of a deep CNN against impulse noise, we propose a novel CNN approach using adaptive convolution, wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Akbarimajd, Adel, Hoertel, Nicolas, Hussain, Mohammad Arafat, Neshat, Ali Asghar, Marhamati, Mahmoud, Bakhtoor, Mahdi, Momeny, Mohammad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259198/
https://www.ncbi.nlm.nih.gov/pubmed/35818367
http://dx.doi.org/10.1016/j.jocs.2022.101763
Descripción
Sumario:Deep convolutional neural networks (CNNs) are used for the detection of COVID-19 in X-ray images. The detection performance of deep CNNs may be reduced by noisy X-ray images. To improve the robustness of a deep CNN against impulse noise, we propose a novel CNN approach using adaptive convolution, with the aim to ameliorate COVID-19 detection in noisy X-ray images without requiring any preprocessing for noise removal. This approach includes an impulse noise-map layer, an adaptive resizing layer, and an adaptive convolution layer to the conventional CNN framework. We also used a learning-to-augment strategy using noisy X-ray images to improve the generalization of a deep CNN. We have collected a dataset of 2093 chest X-ray images including COVID-19 (452 images), non-COVID pneumonia (621 images), and healthy ones (1020 images). The architecture of pre-trained networks such as SqueezeNet, GoogleNet, MobileNetv2, ResNet18, ResNet50, ShuffleNet, and EfficientNetb0 has been modified to increase their robustness to impulse noise. Validation on the noisy X-ray images using the proposed noise-robust layers and learning-to-augment strategy-incorporated ResNet50 showed 2% better classification accuracy compared with state-of-the-art method.