Cargando…
Learning-to-augment incorporated noise-robust deep CNN for detection of COVID-19 in noisy X-ray images
Deep convolutional neural networks (CNNs) are used for the detection of COVID-19 in X-ray images. The detection performance of deep CNNs may be reduced by noisy X-ray images. To improve the robustness of a deep CNN against impulse noise, we propose a novel CNN approach using adaptive convolution, wi...
Autores principales: | Akbarimajd, Adel, Hoertel, Nicolas, Hussain, Mohammad Arafat, Neshat, Ali Asghar, Marhamati, Mahmoud, Bakhtoor, Mahdi, Momeny, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259198/ https://www.ncbi.nlm.nih.gov/pubmed/35818367 http://dx.doi.org/10.1016/j.jocs.2022.101763 |
Ejemplares similares
-
Learning-to-augment strategy using noisy and denoised data: Improving generalizability of deep CNN for the detection of COVID-19 in X-ray images
por: Momeny, Mohammad, et al.
Publicado: (2021) -
Active deep learning from a noisy teacher for semi-supervised 3D image segmentation: Application to COVID-19 pneumonia infection in CT
por: Hussain, Mohammad Arafat, et al.
Publicado: (2022) -
Incorporating Noise Robustness in Speech Command Recognition by Noise Augmentation of Training Data
por: Pervaiz, Ayesha, et al.
Publicado: (2020) -
Robust Learning with Noisy Ship Trajectories by Adaptive Noise Rate Estimation
por: Yang, Haoyu, et al.
Publicado: (2023) -
Robust speaker recognition in noisy environments
por: Rao, K Sreenivasa, et al.
Publicado: (2014)