Cargando…
Light-Weighted Deep Learning Model to Detect Fault in IoT-Based Industrial Equipment
Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through problem detection. It is difficult to utilize a unified model to depict the working condition of devices in real-world industrial scenarios because of the complex and...
Autores principales: | Soni, Mukesh, Khan, Ihtiram Raza, Basir, Sameer, Chadha, Raman, Alguno, Arnold C., Bhowmik, Tapas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259252/ https://www.ncbi.nlm.nih.gov/pubmed/35814591 http://dx.doi.org/10.1155/2022/2455259 |
Ejemplares similares
-
IoT MEMS: IoT-Based Paradigm for Medical Equipment Management Systems of ICUs in Light of COVID-19 Outbreak
Publicado: (2021) -
Light Weighted Healthcare CNN Model to Detect Prostate Cancer on Multiparametric MRI
por: Soni, Mukesh, et al.
Publicado: (2022) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
A Fault-Tolerant Transmission Scheme in SDN-Based Industrial IoT (IIoT) over Fiber-Wireless Networks
por: Zhou, Qinbin, et al.
Publicado: (2022) -
Light-Weight Integration and Interoperation of Localization Systems in IoT
por: Karaagac, Abdulkadir, et al.
Publicado: (2018)