Cargando…
Design and Protection Strategy of Distributed Intrusion Detection System in Big Data Environment
One of the important research topics is protecting the host from threats by developing a reliable and accurate intrusion detection system. However, since the amount of data has grown fast due to the emergence of big data, the performance of traditional systems designed to identify breaches has suffe...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259256/ https://www.ncbi.nlm.nih.gov/pubmed/35814593 http://dx.doi.org/10.1155/2022/4720169 |
Sumario: | One of the important research topics is protecting the host from threats by developing a reliable and accurate intrusion detection system. However, since the amount of data has grown fast due to the emergence of big data, the performance of traditional systems designed to identify breaches has suffered several flaws. One of them, for example, is known as single-point failure; low adaptability and a high false alarm rate are also typical. Hadoop is used to detect intrusions to tackle these difficulties. The Java system is used to create a framework with a significant data flow that detects intrusions when a distributed system is built. The proposed solution employs a distributed operating system for data collection, storage, and analysis. The results indicate that external distributed denial of service (DDoS) attacks are recognized quickly. The single-point failure issue is overcome, alleviating the bottleneck problem of data processing ability. |
---|