Cargando…

Microbial electrosynthesis of methane and acetate—comparison of pure and mixed cultures

ABSTRACT: The electrochemical process of microbial electrosynthesis (MES) is used to drive the metabolism of electroactive microorganisms for the production of valuable chemicals and fuels. MES combines the advantages of electrochemistry, engineering, and microbiology and offers alternative producti...

Descripción completa

Detalles Bibliográficos
Autores principales: Hengsbach, Jan-Niklas, Sabel-Becker, Björn, Ulber, Roland, Holtmann, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259517/
https://www.ncbi.nlm.nih.gov/pubmed/35763070
http://dx.doi.org/10.1007/s00253-022-12031-9
Descripción
Sumario:ABSTRACT: The electrochemical process of microbial electrosynthesis (MES) is used to drive the metabolism of electroactive microorganisms for the production of valuable chemicals and fuels. MES combines the advantages of electrochemistry, engineering, and microbiology and offers alternative production processes based on renewable raw materials and regenerative energies. In addition to the reactor concept and electrode design, the biocatalysts used have a significant influence on the performance of MES. Thus, pure and mixed cultures can be used as biocatalysts. By using mixed cultures, interactions between organisms, such as the direct interspecies electron transfer (DIET) or syntrophic interactions, influence the performance in terms of productivity and the product range of MES. This review focuses on the comparison of pure and mixed cultures in microbial electrosynthesis. The performance indicators, such as productivities and coulombic efficiencies (CEs), for both procedural methods are discussed. Typical products in MES are methane and acetate, therefore these processes are the focus of this review. In general, most studies used mixed cultures as biocatalyst, as more advanced performance of mixed cultures has been seen for both products. When comparing pure and mixed cultures in equivalent experimental setups a 3-fold higher methane and a nearly 2-fold higher acetate production rate can be achieved in mixed cultures. However, studies of pure culture MES for methane production have shown some improvement through reactor optimization and operational mode reaching similar performance indicators as mixed culture MES. Overall, the review gives an overview of the advantages and disadvantages of using pure or mixed cultures in MES. KEY POINTS: • Undefined mixed cultures dominate as inoculums for the MES of methane and acetate, which comprise a high potential of improvement • Under similar conditions, mixed cultures outperform pure cultures in MES • Understanding the role of single species in mixed culture MES is essential for future industrial applications