Cargando…
Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets
The land surface beneath the Greenland and Antarctic Ice Sheets is isostatically suppressed by the mass of the overlying ice. Accurate computation of the land elevation in the absence of ice is important when considering, for example, regional geodynamics, geomorphology, and ice sheet behaviour. Her...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259639/ https://www.ncbi.nlm.nih.gov/pubmed/35794143 http://dx.doi.org/10.1038/s41598-022-15440-y |
_version_ | 1784741830280085504 |
---|---|
author | Paxman, Guy J. G. Austermann, Jacqueline Hollyday, Andrew |
author_facet | Paxman, Guy J. G. Austermann, Jacqueline Hollyday, Andrew |
author_sort | Paxman, Guy J. G. |
collection | PubMed |
description | The land surface beneath the Greenland and Antarctic Ice Sheets is isostatically suppressed by the mass of the overlying ice. Accurate computation of the land elevation in the absence of ice is important when considering, for example, regional geodynamics, geomorphology, and ice sheet behaviour. Here, we use contemporary compilations of ice thickness and lithospheric effective elastic thickness to calculate the fully re-equilibrated isostatic response of the solid Earth to the complete removal of the Greenland and Antarctic Ice Sheets. We use an elastic plate flexure model to compute the isostatic response to the unloading of the modern ice sheet loads, and a self-gravitating viscoelastic Earth model to make an adjustment for the remaining isostatic disequilibrium driven by ice mass loss since the Last Glacial Maximum. Feedbacks arising from water loading in areas situated below sea level after ice sheet removal are also taken into account. In addition, we quantify the uncertainties in the total isostatic response associated with a range of elastic and viscoelastic Earth properties. We find that the maximum change in bed elevation following full re-equilibration occurs over the centre of the landmasses and is +783 m in Greenland and +936 m in Antarctica. By contrast, areas around the ice margins experience up to 123 m of lowering due to a combination of sea level rise, peripheral bulge collapse, and water loading. The computed isostatic response fields are openly accessible and have a number of applications for studying regional geodynamics, landscape evolution, cryosphere dynamics, and relative sea level change. |
format | Online Article Text |
id | pubmed-9259639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92596392022-07-08 Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets Paxman, Guy J. G. Austermann, Jacqueline Hollyday, Andrew Sci Rep Article The land surface beneath the Greenland and Antarctic Ice Sheets is isostatically suppressed by the mass of the overlying ice. Accurate computation of the land elevation in the absence of ice is important when considering, for example, regional geodynamics, geomorphology, and ice sheet behaviour. Here, we use contemporary compilations of ice thickness and lithospheric effective elastic thickness to calculate the fully re-equilibrated isostatic response of the solid Earth to the complete removal of the Greenland and Antarctic Ice Sheets. We use an elastic plate flexure model to compute the isostatic response to the unloading of the modern ice sheet loads, and a self-gravitating viscoelastic Earth model to make an adjustment for the remaining isostatic disequilibrium driven by ice mass loss since the Last Glacial Maximum. Feedbacks arising from water loading in areas situated below sea level after ice sheet removal are also taken into account. In addition, we quantify the uncertainties in the total isostatic response associated with a range of elastic and viscoelastic Earth properties. We find that the maximum change in bed elevation following full re-equilibration occurs over the centre of the landmasses and is +783 m in Greenland and +936 m in Antarctica. By contrast, areas around the ice margins experience up to 123 m of lowering due to a combination of sea level rise, peripheral bulge collapse, and water loading. The computed isostatic response fields are openly accessible and have a number of applications for studying regional geodynamics, landscape evolution, cryosphere dynamics, and relative sea level change. Nature Publishing Group UK 2022-07-06 /pmc/articles/PMC9259639/ /pubmed/35794143 http://dx.doi.org/10.1038/s41598-022-15440-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Paxman, Guy J. G. Austermann, Jacqueline Hollyday, Andrew Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets |
title | Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets |
title_full | Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets |
title_fullStr | Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets |
title_full_unstemmed | Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets |
title_short | Total isostatic response to the complete unloading of the Greenland and Antarctic Ice Sheets |
title_sort | total isostatic response to the complete unloading of the greenland and antarctic ice sheets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259639/ https://www.ncbi.nlm.nih.gov/pubmed/35794143 http://dx.doi.org/10.1038/s41598-022-15440-y |
work_keys_str_mv | AT paxmanguyjg totalisostaticresponsetothecompleteunloadingofthegreenlandandantarcticicesheets AT austermannjacqueline totalisostaticresponsetothecompleteunloadingofthegreenlandandantarcticicesheets AT hollydayandrew totalisostaticresponsetothecompleteunloadingofthegreenlandandantarcticicesheets |