Cargando…
ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations
Brightfield cell microscopy is a foundational tool in life sciences. The acquired images are prone to contain visual artifacts that hinder downstream analysis, and automatically removing them is therefore of great practical interest. Deep convolutional neural networks are state-of-the-art for image...
Autores principales: | Ali, Mohammed A. S., Hollo, Kaspar, Laasfeld, Tõnis, Torp, Jane, Tahk, Maris-Johanna, Rinken, Ago, Palo, Kaupo, Parts, Leopold, Fishman, Dmytro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259686/ https://www.ncbi.nlm.nih.gov/pubmed/35794119 http://dx.doi.org/10.1038/s41598-022-14703-y |
Ejemplares similares
-
Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M(4) muscarinic receptors?
por: Tahk, Maris-Johanna, et al.
Publicado: (2022) -
Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images
por: Ali, Mohammed A. S., et al.
Publicado: (2021) -
Fluorescence based HTS-compatible ligand binding assays for dopamine D(3) receptors in baculovirus preparations and live cells
por: Tahk, Maris-Johanna, et al.
Publicado: (2023) -
Automated brightfield morphometry of 3D organoid populations by OrganoSeg
por: Borten, Michael A., et al.
Publicado: (2018) -
Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon
por: Lavogina, Darja, et al.
Publicado: (2022)