Cargando…

Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges

Reversible‐deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dworakowska, Sylwia, Lorandi, Francesca, Gorczyński, Adam, Matyjaszewski, Krzysztof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259732/
https://www.ncbi.nlm.nih.gov/pubmed/35175001
http://dx.doi.org/10.1002/advs.202106076
Descripción
Sumario:Reversible‐deactivation radical polymerizations (RDRPs) have revolutionized synthetic polymer chemistry. Nowadays, RDRPs facilitate design and preparation of materials with controlled architecture, composition, and functionality. Atom transfer radical polymerization (ATRP) has evolved beyond traditional polymer field, enabling synthesis of organic–inorganic hybrids, bioconjugates, advanced polymers for electronics, energy, and environmentally relevant polymeric materials for broad applications in various fields. This review focuses on the relation between ATRP technology and the 12 principles of green chemistry, which are paramount guidelines in sustainable research and implementation. The green features of ATRP are presented, discussing the environmental and/or health issues and the challenges that remain to be overcome. Key discoveries and recent developments in green ATRP are highlighted, while providing a perspective for future opportunities in this area.