Cargando…
Explainable Machine Learning Model to Prediction EGFR Mutation in Lung Cancer
OBJECTIVES: The aim of this study is to determine whether the clinical features including blood markers can establish an explainable machine learning model to predict epidermal growth factor receptor (EGFR) mutation in lung cancer. METHODS: We retrospectively analyzed 7,413 patients with lung adenoc...
Autores principales: | Yang, Ruiyuan, Xiong, Xingyu, Wang, Haoyu, Li, Weimin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259982/ https://www.ncbi.nlm.nih.gov/pubmed/35814445 http://dx.doi.org/10.3389/fonc.2022.924144 |
Ejemplares similares
-
Prognostic Value of the Geriatric Nutritional Risk Index in Non-Small Cell Lung Cancer Patients: A Systematic Review and Meta-Analysis
por: Wang, Haoyu, et al.
Publicado: (2022) -
An explainable machine learning ensemble model to predict the risk of ovarian cancer in BRCA-mutated patients undergoing risk-reducing salpingo-oophorectomy
por: Comes, Maria Colomba, et al.
Publicado: (2023) -
Editorial: Interpretable and explainable machine learning models in oncology
por: Hrinivich, William Thomas, et al.
Publicado: (2023) -
Machine Learning-Based CT Radiomics Analysis for Prognostic Prediction in Metastatic Non-Small Cell Lung Cancer Patients With EGFR-T790M Mutation Receiving Third-Generation EGFR-TKI Osimertinib Treatment
por: Tang, Xin, et al.
Publicado: (2021) -
Radiomic Signatures for Predicting EGFR Mutation Status in Lung Cancer Brain Metastases
por: Zheng, Lie, et al.
Publicado: (2022)