Cargando…
A Self-Supervised Deep Learning Reconstruction for Shortening the Breathhold and Acquisition Window in Cardiac Magnetic Resonance Fingerprinting
The aim of this study is to shorten the breathhold and diastolic acquisition window in cardiac magnetic resonance fingerprinting (MRF) for simultaneous T(1), T(2), and proton spin density (M(0)) mapping to improve scan efficiency and reduce motion artifacts. To this end, a novel reconstruction was d...
Autor principal: | Hamilton, Jesse I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260051/ https://www.ncbi.nlm.nih.gov/pubmed/35811730 http://dx.doi.org/10.3389/fcvm.2022.928546 |
Ejemplares similares
-
Artificial intelligence in cardiac magnetic resonance fingerprinting
por: Velasco, Carlos, et al.
Publicado: (2022) -
Simultaneous multi-parametric acquisition and reconstruction techniques in cardiac magnetic resonance imaging: Basic concepts and status of clinical development
por: Eyre, Katerina, et al.
Publicado: (2022) -
Cardiac MR fingerprinting with a short acquisition window in consecutive patients referred for clinical CMR and healthy volunteers
por: Rumac, Simone, et al.
Publicado: (2022) -
Reproducibility of repeated breathhold and impact of breathhold failure in whole breast and regional nodal irradiation in prone crawl position
por: Deseyne, Pieter, et al.
Publicado: (2022) -
Modified Subtraction Coronary CT Angiography with a Two-Breathhold Technique: Image Quality and Diagnostic Accuracy in Patients with Coronary Calcifications
por: Guo, Weifeng, et al.
Publicado: (2019)