Cargando…
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
Gene-to-gene networks, such as Gene Regulatory Networks (GRN) and Predictive Expression Networks (PEN) capture relationships between genes and are beneficial for use in downstream biological analyses. There exists multiple network inference tools to produce these gene-to-gene networks from matrices...
Autores principales: | Walker, Angelica M., Cliff, Ashley, Romero, Jonathon, Shah, Manesh B., Jones, Piet, Felipe Machado Gazolla, Joao Gabriel, Jacobson, Daniel A, Kainer, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260260/ https://www.ncbi.nlm.nih.gov/pubmed/35832622 http://dx.doi.org/10.1016/j.csbj.2022.06.037 |
Ejemplares similares
-
A High-Performance Computing Implementation of Iterative Random Forest for the Creation of Predictive Expression Networks
por: Cliff, Ashley, et al.
Publicado: (2019) -
Using iterative random forest to find geospatial environmental and Sociodemographic predictors of suicide attempts
por: Pavicic, Mirko, et al.
Publicado: (2023) -
Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models
por: Garvin, Michael R., et al.
Publicado: (2020) -
Iterative random forests to discover predictive and stable high-order interactions
por: Basu, Sumanta, et al.
Publicado: (2018) -
A balanced iterative random forest for gene selection from microarray data
por: Anaissi, Ali, et al.
Publicado: (2013)