Cargando…

Exposure of embryonating eggs to Enterococcus faecalis and Escherichia coli potentiates E. coli pathogenicity and increases mortality of neonatal chickens

Enterococci and Escherichia coli are opportunistic pathogens of poultry and are associated with embryo and neonatal chick mortality. We have recently demonstrated that 56% of dead broiler chicken embryos in commercial hatcheries in western Canada were due to the coinfection of Enterococcus species a...

Descripción completa

Detalles Bibliográficos
Autores principales: Karunarathna, Ruwani, Ahmed, Khawaja Ashfaque, Goonewardene, Kalhari, Gunawardana, Thushari, Kurukulasuriya, Shanika, Liu, Mengying, Gupta, Ashish, Popowich, Shelly, Ayalew, Lisanework, Chow- Lockerbie, Betty, Willson, Philip, Ngeleka, Musangu, Gomis, Susantha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260295/
https://www.ncbi.nlm.nih.gov/pubmed/35793601
http://dx.doi.org/10.1016/j.psj.2022.101983
Descripción
Sumario:Enterococci and Escherichia coli are opportunistic pathogens of poultry and are associated with embryo and neonatal chick mortality. We have recently demonstrated that 56% of dead broiler chicken embryos in commercial hatcheries in western Canada were due to the coinfection of Enterococcus species and E. coli. The objective of this study was to investigate the host-pathogen interactions of Enterococcus faecalis and E. coli in developing chicken embryos. Embryonating eggs at 12 d of incubation were dipped in a solution of E. faecalis and/or E. coli for 30 s to expose the eggshell to study the migration and colonization of E. faecalis and E. coli in the internal organs of chicken embryos and subsequent neonatal chicken mortality following hatch. A multidrug-resistant E. faecalis isolate from a dead chicken embryo and an E. faecalis isolate from a case of yolk sac infection were able to colonize the internal organs of chicken embryos rapidly compared to an E. faecalis isolate from a healthy chicken without affecting viability or hatchability of embryos. Although E. faecalis colonized internal organs of chicken embryos, no evidence of inflammation of these organs nor the expression of virulence genes of E. faecalis was observed. Although E. faecalis and E. coli alone did not affect the viability of embryos, a significantly high neonatal chicken mortality (27%) was observed following exposure of embryos to both E. faecalis and E. coli. Upregulation of IL-1 and CXCR4 was evident 48 h before peak mortality of neonatal chickens; this could suggest a possible link of cytokine dysregulation to increased mortality in coinfected neonatal chickens. However, further studies are warranted to investigate this issue vis-à-vis coinfection with E. faecalis and E. coli in chicken embryos and neonatal chickens.