Cargando…
Accurate Identification of Subclones in Tumor Genomes
Understanding intratumor heterogeneity is critical for studying tumorigenesis and designing personalized treatments. To decompose the mixed cell population in a tumor, subclones are inferred computationally based on variant allele frequency (VAF) from bulk sequencing data. In this study, we showed t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260306/ https://www.ncbi.nlm.nih.gov/pubmed/35749590 http://dx.doi.org/10.1093/molbev/msac136 |
_version_ | 1784741996558024704 |
---|---|
author | Ahmadinejad, Navid Troftgruben, Shayna Wang, Junwen Chandrashekar, Pramod B Dinu, Valentin Maley, Carlo Liu, Li |
author_facet | Ahmadinejad, Navid Troftgruben, Shayna Wang, Junwen Chandrashekar, Pramod B Dinu, Valentin Maley, Carlo Liu, Li |
author_sort | Ahmadinejad, Navid |
collection | PubMed |
description | Understanding intratumor heterogeneity is critical for studying tumorigenesis and designing personalized treatments. To decompose the mixed cell population in a tumor, subclones are inferred computationally based on variant allele frequency (VAF) from bulk sequencing data. In this study, we showed that sequencing depth, mean VAF, and variance of VAF of a subclone are confounded. Without considering this effect, current methods require deep-sequencing data (>300× depth) to reliably infer subclones. Here, we present a novel algorithm that incorporates depth-variance and mean-variance dependencies in a clustering error model and successfully identifies subclones in tumors sequenced at depths of as low as 30×. We implemented the algorithm as a model-based adaptive grouping of subclones (MAGOS) method. Analyses of computer simulated data and empirical sequencing data showed that MAGOS outperformed existing methods on minimum sequencing depth, decomposition accuracy, and computation efficiency. The most prominent improvements were observed in analyzing tumors sequenced at depths between 30× and 200×, whereas the performance was comparable between MAGOS and existing methods on deeply sequenced tumors. MAGOS supports analysis of single-nucleotide variants and copy number variants from a single sample or multiple samples of a tumor. We applied MAGOS to whole-exome data of late-stage liver cancers and discovered that high subclone count in a tumor was a significant risk factor of poor prognosis. Lastly, our analysis suggested that sequencing multiple samples of the same tumor at standard depth is more cost-effective and robust for subclone characterization than deep sequencing a single sample. MAGOS is available at github (https://github.com/liliulab/magos). |
format | Online Article Text |
id | pubmed-9260306 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-92603062022-07-07 Accurate Identification of Subclones in Tumor Genomes Ahmadinejad, Navid Troftgruben, Shayna Wang, Junwen Chandrashekar, Pramod B Dinu, Valentin Maley, Carlo Liu, Li Mol Biol Evol Methods Understanding intratumor heterogeneity is critical for studying tumorigenesis and designing personalized treatments. To decompose the mixed cell population in a tumor, subclones are inferred computationally based on variant allele frequency (VAF) from bulk sequencing data. In this study, we showed that sequencing depth, mean VAF, and variance of VAF of a subclone are confounded. Without considering this effect, current methods require deep-sequencing data (>300× depth) to reliably infer subclones. Here, we present a novel algorithm that incorporates depth-variance and mean-variance dependencies in a clustering error model and successfully identifies subclones in tumors sequenced at depths of as low as 30×. We implemented the algorithm as a model-based adaptive grouping of subclones (MAGOS) method. Analyses of computer simulated data and empirical sequencing data showed that MAGOS outperformed existing methods on minimum sequencing depth, decomposition accuracy, and computation efficiency. The most prominent improvements were observed in analyzing tumors sequenced at depths between 30× and 200×, whereas the performance was comparable between MAGOS and existing methods on deeply sequenced tumors. MAGOS supports analysis of single-nucleotide variants and copy number variants from a single sample or multiple samples of a tumor. We applied MAGOS to whole-exome data of late-stage liver cancers and discovered that high subclone count in a tumor was a significant risk factor of poor prognosis. Lastly, our analysis suggested that sequencing multiple samples of the same tumor at standard depth is more cost-effective and robust for subclone characterization than deep sequencing a single sample. MAGOS is available at github (https://github.com/liliulab/magos). Oxford University Press 2022-06-24 /pmc/articles/PMC9260306/ /pubmed/35749590 http://dx.doi.org/10.1093/molbev/msac136 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Ahmadinejad, Navid Troftgruben, Shayna Wang, Junwen Chandrashekar, Pramod B Dinu, Valentin Maley, Carlo Liu, Li Accurate Identification of Subclones in Tumor Genomes |
title | Accurate Identification of Subclones in Tumor Genomes |
title_full | Accurate Identification of Subclones in Tumor Genomes |
title_fullStr | Accurate Identification of Subclones in Tumor Genomes |
title_full_unstemmed | Accurate Identification of Subclones in Tumor Genomes |
title_short | Accurate Identification of Subclones in Tumor Genomes |
title_sort | accurate identification of subclones in tumor genomes |
topic | Methods |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260306/ https://www.ncbi.nlm.nih.gov/pubmed/35749590 http://dx.doi.org/10.1093/molbev/msac136 |
work_keys_str_mv | AT ahmadinejadnavid accurateidentificationofsubclonesintumorgenomes AT troftgrubenshayna accurateidentificationofsubclonesintumorgenomes AT wangjunwen accurateidentificationofsubclonesintumorgenomes AT chandrashekarpramodb accurateidentificationofsubclonesintumorgenomes AT dinuvalentin accurateidentificationofsubclonesintumorgenomes AT maleycarlo accurateidentificationofsubclonesintumorgenomes AT liuli accurateidentificationofsubclonesintumorgenomes |