Cargando…
Network Layer Analysis for a RL-Based Robotic Reaching Task
Recent experiments indicate that pretraining of end-to-end reinforcement learning neural networks on general tasks can speed up the training process for specific robotic applications. However, it remains open if these networks form general feature extractors and a hierarchical organization that can...
Autores principales: | Feldotto, Benedikt, Lengenfelder, Heiko, Röhrbein, Florian, Knoll, Alois C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260386/ https://www.ncbi.nlm.nih.gov/pubmed/35813855 http://dx.doi.org/10.3389/frobt.2022.799644 |
Ejemplares similares
-
A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks
por: Bing, Zhenshan, et al.
Publicado: (2018) -
Compositional RL Agents That Follow Language Commands in Temporal Logic
por: Kuo, Yen-Ling, et al.
Publicado: (2021) -
Task-specific robot base pose optimization for robot-assisted surgeries
por: Sundaram, Ashok M., et al.
Publicado: (2022) -
Image-based robot navigation with task achievability
por: Ishihara, Yu, et al.
Publicado: (2023) -
Neural Network Based Uncertainty Prediction for Autonomous Vehicle Application
por: Zhang, Feihu, et al.
Publicado: (2019)