Cargando…
Prediction of high and low disease activity in early MS patients using multiple kernel learning identifies importance of lateral ventricle intensity
BACKGROUND: Lack of easy-to-interpret disease activity prediction methods in early MS can lead to worse patient prognosis. OBJECTIVES: Using machine learning (multiple kernel learning – MKL) models, we assessed the prognostic value of various clinical and MRI measures for disease activity. METHODS:...
Autores principales: | Chien, Claudia, Seiler, Moritz, Eitel, Fabian, Schmitz-Hübsch, Tanja, Paul, Friedemann, Ritter, Kerstin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260586/ https://www.ncbi.nlm.nih.gov/pubmed/35815061 http://dx.doi.org/10.1177/20552173221109770 |
Ejemplares similares
-
Altered Coupling of Psychological Relaxation and Regional Volume of Brain Reward Areas in Multiple Sclerosis
por: Wakonig, Katharina, et al.
Publicado: (2020) -
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
por: Schulz, Marc-Andre, et al.
Publicado: (2023) -
Patch individual filter layers in CNNs to harness the spatial homogeneity of neuroimaging data
por: Eitel, Fabian, et al.
Publicado: (2021) -
Layer-Wise Relevance Propagation for Explaining Deep Neural Network Decisions in MRI-Based Alzheimer's Disease Classification
por: Böhle, Moritz, et al.
Publicado: (2019) -
MRI Markers and Functional Performance in Patients With CIS and MS: A Cross-Sectional Study
por: Rasche, Ludwig, et al.
Publicado: (2018)