Cargando…
Effect of the Dispersion Process and Nanoparticle Quality on Chemical Sensing Performance
[Image: see text] On the surface of chemiresistive films, the scarce heterogeneity of a molecularly capped gold nanoparticle (MCGNP) colloidal dispersion and uneven evaporation of the MCGNP-contained drying drop applied to this surface are among the main factors that affect reproducibility, and repe...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260890/ https://www.ncbi.nlm.nih.gov/pubmed/35811934 http://dx.doi.org/10.1021/acsomega.2c01668 |
Sumario: | [Image: see text] On the surface of chemiresistive films, the scarce heterogeneity of a molecularly capped gold nanoparticle (MCGNP) colloidal dispersion and uneven evaporation of the MCGNP-contained drying drop applied to this surface are among the main factors that affect reproducibility, and repeatable fabrication of thin films of MCGNPs. This article shows that an increase in reproducibility and repeatability is possible using a dispersant and a surfactant during the deposition and annealing processes of the MCGNP. The results show higher sensitivity and accuracy of the sensors for the detection of volatile organic compounds in air and an increased limit of detection. These simple and practical additions might serve as a launching pad for fabrication of other types of thin-film-based sensors. |
---|