Cargando…
Vapor Sorption–Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance
[Image: see text] Protection and decontamination of surfaces after exposure to chemical warfare agents (CWAs) are of considerable interest to the homeland defense and battlespace operation communities. In this work, polyurethane was spin-coated onto aluminum oxide quartz crystal microbalance (QCM) s...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260914/ https://www.ncbi.nlm.nih.gov/pubmed/35811928 http://dx.doi.org/10.1021/acsomega.2c02257 |
_version_ | 1784742149206573056 |
---|---|
author | Kittle, Joshua D. Grasdal, Espen N. Kim, Sabrina M. Levin, Nestor R. Davis, Parker A. Kittle, Aliza L. Kittle, Isaiah J. Mulcahy, Jacob A. Keith, Bailey R. |
author_facet | Kittle, Joshua D. Grasdal, Espen N. Kim, Sabrina M. Levin, Nestor R. Davis, Parker A. Kittle, Aliza L. Kittle, Isaiah J. Mulcahy, Jacob A. Keith, Bailey R. |
author_sort | Kittle, Joshua D. |
collection | PubMed |
description | [Image: see text] Protection and decontamination of surfaces after exposure to chemical warfare agents (CWAs) are of considerable interest to the homeland defense and battlespace operation communities. In this work, polyurethane was spin-coated onto aluminum oxide quartz crystal microbalance (QCM) sensors. Polyurethane film thickness was varied by altering the concentration of the polymer/chloroform solution used for spin-coating. Atomic force microscopy confirmed the formation of smooth, homogeneous films on the QCM sensor surface. Aluminum oxide QCM sensors coated with polyurethane were exposed to saturated vapors of dichloropentane (DCP), a mustard gas (HD) simulant, and dimethyl methylphosphonate (DMMP), a sarin gas (GB) simulant, and the mass uptake, diffusion coefficient, volume fraction, and partition coefficient of the simulant in the film were determined from QCM data. Results showed that both DCP and DMMP readily sorbed into the films although the mass uptake of DCP was greater than that of DMMP owing to DCP’s higher vapor pressure. Additionally, the CWA simulant uptake increased with polyurethane film thickness. Sorption diffusion coefficients were 1 × 10(–13) cm(2)/s and 1 × 10(–12) cm(2)/s for DCP and DMMP vapor, respectively. Simulant desorption was also measured and showed that some DMMP remained in the film/substrate system, while DCP sorption was fully reversible. Reversible desorption for both CWA simulants was relatively quick and independent over the range of film thicknesses studied, with average desorption diffusion coefficients of 2 × 10(–9) cm(2)/s and 1 × 10(–11) cm(2)/s for DCP and DMMP, respectively. Collectively, this study is expected to inform protection and decontamination strategies of equipment and structures upon exposure to CWAs. |
format | Online Article Text |
id | pubmed-9260914 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92609142022-07-08 Vapor Sorption–Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance Kittle, Joshua D. Grasdal, Espen N. Kim, Sabrina M. Levin, Nestor R. Davis, Parker A. Kittle, Aliza L. Kittle, Isaiah J. Mulcahy, Jacob A. Keith, Bailey R. ACS Omega [Image: see text] Protection and decontamination of surfaces after exposure to chemical warfare agents (CWAs) are of considerable interest to the homeland defense and battlespace operation communities. In this work, polyurethane was spin-coated onto aluminum oxide quartz crystal microbalance (QCM) sensors. Polyurethane film thickness was varied by altering the concentration of the polymer/chloroform solution used for spin-coating. Atomic force microscopy confirmed the formation of smooth, homogeneous films on the QCM sensor surface. Aluminum oxide QCM sensors coated with polyurethane were exposed to saturated vapors of dichloropentane (DCP), a mustard gas (HD) simulant, and dimethyl methylphosphonate (DMMP), a sarin gas (GB) simulant, and the mass uptake, diffusion coefficient, volume fraction, and partition coefficient of the simulant in the film were determined from QCM data. Results showed that both DCP and DMMP readily sorbed into the films although the mass uptake of DCP was greater than that of DMMP owing to DCP’s higher vapor pressure. Additionally, the CWA simulant uptake increased with polyurethane film thickness. Sorption diffusion coefficients were 1 × 10(–13) cm(2)/s and 1 × 10(–12) cm(2)/s for DCP and DMMP vapor, respectively. Simulant desorption was also measured and showed that some DMMP remained in the film/substrate system, while DCP sorption was fully reversible. Reversible desorption for both CWA simulants was relatively quick and independent over the range of film thicknesses studied, with average desorption diffusion coefficients of 2 × 10(–9) cm(2)/s and 1 × 10(–11) cm(2)/s for DCP and DMMP, respectively. Collectively, this study is expected to inform protection and decontamination strategies of equipment and structures upon exposure to CWAs. American Chemical Society 2022-06-22 /pmc/articles/PMC9260914/ /pubmed/35811928 http://dx.doi.org/10.1021/acsomega.2c02257 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Kittle, Joshua D. Grasdal, Espen N. Kim, Sabrina M. Levin, Nestor R. Davis, Parker A. Kittle, Aliza L. Kittle, Isaiah J. Mulcahy, Jacob A. Keith, Bailey R. Vapor Sorption–Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance |
title | Vapor Sorption–Desorption Phenomena of HD and
GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a
Quartz Crystal Microbalance |
title_full | Vapor Sorption–Desorption Phenomena of HD and
GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a
Quartz Crystal Microbalance |
title_fullStr | Vapor Sorption–Desorption Phenomena of HD and
GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a
Quartz Crystal Microbalance |
title_full_unstemmed | Vapor Sorption–Desorption Phenomena of HD and
GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a
Quartz Crystal Microbalance |
title_short | Vapor Sorption–Desorption Phenomena of HD and
GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a
Quartz Crystal Microbalance |
title_sort | vapor sorption–desorption phenomena of hd and
gb simulants from polyurethane thin films on aluminum oxide via a
quartz crystal microbalance |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9260914/ https://www.ncbi.nlm.nih.gov/pubmed/35811928 http://dx.doi.org/10.1021/acsomega.2c02257 |
work_keys_str_mv | AT kittlejoshuad vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT grasdalespenn vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT kimsabrinam vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT levinnestorr vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT davisparkera vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT kittlealizal vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT kittleisaiahj vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT mulcahyjacoba vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance AT keithbaileyr vaporsorptiondesorptionphenomenaofhdandgbsimulantsfrompolyurethanethinfilmsonaluminumoxideviaaquartzcrystalmicrobalance |