Cargando…

Identification of prognostic stemness biomarkers in colon adenocarcinoma drug resistance

BACKGROUND: Colon adenocarcinoma (COAD) is one of the leading causes of death worldwide. Cancer stem cells (CSCs) are vital for COAD chemoresistance and recurrence, however little is known about stem cell-related biomarkers in drug resistance and COAD prognosis prediction. METHODS: To uncover the ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ziyue, Chen, Jierong, Zhu, Dandan, Wang, Xiaoxiao, Chen, Jace, Zhang, Yu, Lian, Qizhou, Gu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261069/
https://www.ncbi.nlm.nih.gov/pubmed/35794546
http://dx.doi.org/10.1186/s12863-022-01063-9
Descripción
Sumario:BACKGROUND: Colon adenocarcinoma (COAD) is one of the leading causes of death worldwide. Cancer stem cells (CSCs) are vital for COAD chemoresistance and recurrence, however little is known about stem cell-related biomarkers in drug resistance and COAD prognosis prediction. METHODS: To uncover the roles of CSC in COAD tumorigenesis, chemoresistance, and prognosis, we retrieved COAD patients’ RNAseq data from TCGA (The Cancer Genome Atlas). We further performed analysis of differentially expressed genes (DEGs) and mRNA expression-based stemness index (mRNAsi) to identify stemness-related COAD biomarkers. We then evaluated the roles of mRNAsi in tumorigenesis, clinical-stage, overall survival (OS), and chemoresistance. Afterward, we used identified prognostic stemness-related genes (PSRGs) to construct a prediction model. After constructing the prediction model, we used elastic Net regression and area under the curve (AUC) to explore the prediction value of PSRGs based on risk scores and the receiver operator characteristic (ROC) curve. To elucidate the underlying interconnected systems, we examined relationships between the levels of TFs, PSRGs, and 50 cancer hallmarks by a Pearson correlation analysis. RESULTS: Twelve thousand one hundred eight DEGs were identified by comparing 456 primary COADs and 41 normal solid tissue samples. Furthermore, we identified 4351 clinical stage-related DEGs, 16,516 stemness-associated DEGs, and 54 chemoresistance-related DEGs from cancer stages: mRNAsi, and COAD chemoresistance. Compared to normal tissue samples, mRNAsi in COAD patients were marked on an elevation and involved in prognosis (p = 0.027), stemness-related DEGs based on chemoresistance (OR = 3.28, p ≤ 0.001) and AJCC clinical stage relating (OR = 4.02, p ≤ 0.001) to COAD patients. The prediction model of prognosis were constructed using the 6 PSRGs with high accuracy (AUC: 0.659). The model identified universal correlation between NRIP2 and FDFT1 (key PRSGs), and some cancer related transcription factors (TFs) and trademarks of cancer gene were in the regulatory network. CONCLUSION: We found that mRNAsi is a reliable predictive biomarker of tumorigenesis and COAD prognosis. Our established prediction model of COAD chemoresistance, which includes the six PSRGs, is effective, as the model provides promising therapeutic targets in the COAD. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12863-022-01063-9.