Cargando…

Change point detection for clustered expression data

BACKGROUND: To detect changes in biological processes, samples are often studied at several time points. We examined expression data measured at different developmental stages, or more broadly, historical data. Hence, the main assumption of our proposed methodology was the independence between the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Sieg, Miriam, Sciesielski, Lina Katrin, Kirschner, Karin Michaela, Kruppa, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261071/
https://www.ncbi.nlm.nih.gov/pubmed/35794534
http://dx.doi.org/10.1186/s12864-022-08680-9
Descripción
Sumario:BACKGROUND: To detect changes in biological processes, samples are often studied at several time points. We examined expression data measured at different developmental stages, or more broadly, historical data. Hence, the main assumption of our proposed methodology was the independence between the examined samples over time. In addition, however, the examinations were clustered at each time point by measuring littermates from relatively few mother mice at each developmental stage. As each examination was lethal, we had an independent data structure over the entire history, but a dependent data structure at a particular time point. Over the course of these historical data, we wanted to identify abrupt changes in the parameter of interest - change points. RESULTS: In this study, we demonstrated the application of generalized hypothesis testing using a linear mixed effects model as a possible method to detect change points. The coefficients from the linear mixed model were used in multiple contrast tests and the effect estimates were visualized with their respective simultaneous confidence intervals. The latter were used to determine the change point(s). In small simulation studies, we modelled different courses with abrupt changes and compared the influence of different contrast matrices. We found two contrasts, both capable of answering different research questions in change point detection: The Sequen contrast to detect individual change points and the McDermott contrast to find change points due to overall progression. We provide the R code for direct use with provided examples. The applicability of those tests for real experimental data was shown with in-vivo data from a preclinical study. CONCLUSION: Simultaneous confidence intervals estimated by multiple contrast tests using the model fit from a linear mixed model were capable to determine change points in clustered expression data. The confidence intervals directly delivered interpretable effect estimates representing the strength of the potential change point. Hence, scientists can define biologically relevant threshold of effect strength depending on their research question. We found two rarely used contrasts best fitted for detection of a possible change point: the Sequen and McDermott contrasts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1186/s12864-022-08680-9).