Cargando…
Use of machine learning to identify patients at risk of sub-optimal adherence: study based on real-world data from 10,929 children using a connected auto-injector device
BACKGROUND: Our aim was to develop a machine learning model, using real-world data captured from a connected auto-injector device and from early indicators from the first 3 months of treatment, to predict sub-optimal adherence to recombinant human growth hormone (r-hGH) in patients with growth disor...
Autores principales: | Spataru, Amalia, van Dommelen, Paula, Arnaud, Lilian, Le Masne, Quentin, Quarteroni, Silvia, Koledova, Ekaterina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261072/ https://www.ncbi.nlm.nih.gov/pubmed/35794586 http://dx.doi.org/10.1186/s12911-022-01918-2 |
Ejemplares similares
-
Integrated Digital Health Solutions in the Management of Growth Disorders in Pediatric Patients Receiving Growth Hormone Therapy: A Retrospective Analysis
por: Tornincasa, Vincenzo, et al.
Publicado: (2022) -
Analysis of real-world data on growth hormone therapy adherence using a connected injection device
por: Koledova, Ekaterina, et al.
Publicado: (2020) -
Adherence to Growth Hormone Treatment Using a Connected Device in Latin America: Real-World Exploratory Descriptive Analysis Study
por: Assefi, Aria, et al.
Publicado: (2022) -
Curve matching to predict growth in patients receiving growth hormone therapy: An interpretable & explainable method
por: van Dommelen, Paula, et al.
Publicado: (2022) -
THU163 Traffic Light Alerting System For Adherence Risk Management To Improve Catch-Up Growth In Patients Receiving Recombinant Human Growth Hormone Therapy
por: Loche, Sandro, et al.
Publicado: (2023)