Cargando…
Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
BACKGROUND: Prognostic models are used widely in the oncology domain to guide medical decision-making. Little is known about the risk of bias of prognostic models developed using machine learning and the barriers to their clinical uptake in the oncology domain. METHODS: We conducted a systematic rev...
Autores principales: | Dhiman, Paula, Ma, Jie, Andaur Navarro, Constanza L., Speich, Benjamin, Bullock, Garrett, Damen, Johanna A. A., Hooft, Lotty, Kirtley, Shona, Riley, Richard D., Van Calster, Ben, Moons, Karel G. M., Collins, Gary S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261114/ https://www.ncbi.nlm.nih.gov/pubmed/35794668 http://dx.doi.org/10.1186/s41512-022-00126-w |
Ejemplares similares
-
Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved
por: Dhiman, Paula, et al.
Publicado: (2021) -
Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review
por: Dhiman, Paula, et al.
Publicado: (2022) -
Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
por: Andaur Navarro, Constanza L, et al.
Publicado: (2021) -
Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review
por: Andaur Navarro, Constanza L., et al.
Publicado: (2022) -
Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques
por: Andaur Navarro, Constanza L, et al.
Publicado: (2020)