Cargando…
Classifying the lifestyle status for Alzheimer’s disease from clinical notes using deep learning with weak supervision
BACKGROUND: Since no effective therapies exist for Alzheimer’s disease (AD), prevention has become more critical through lifestyle status changes and interventions. Analyzing electronic health records (EHRs) of patients with AD can help us better understand lifestyle’s effect on AD. However, lifesty...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261217/ https://www.ncbi.nlm.nih.gov/pubmed/35799294 http://dx.doi.org/10.1186/s12911-022-01819-4 |
Sumario: | BACKGROUND: Since no effective therapies exist for Alzheimer’s disease (AD), prevention has become more critical through lifestyle status changes and interventions. Analyzing electronic health records (EHRs) of patients with AD can help us better understand lifestyle’s effect on AD. However, lifestyle information is typically stored in clinical narratives. Thus, the objective of the study was to compare different natural language processing (NLP) models on classifying the lifestyle statuses (e.g., physical activity and excessive diet) from clinical texts in English. METHODS: Based on the collected concept unique identifiers (CUIs) associated with the lifestyle status, we extracted all related EHRs for patients with AD from the Clinical Data Repository (CDR) of the University of Minnesota (UMN). We automatically generated labels for the training data by using a rule-based NLP algorithm. We conducted weak supervision for pre-trained Bidirectional Encoder Representations from Transformers (BERT) models and three traditional machine learning models as baseline models on the weakly labeled training corpus. These models include the BERT base model, PubMedBERT (abstracts + full text), PubMedBERT (only abstracts), Unified Medical Language System (UMLS) BERT, Bio BERT, Bio-clinical BERT, logistic regression, support vector machine, and random forest. The rule-based model used for weak supervision was tested on the GSC for comparison. We performed two case studies: physical activity and excessive diet, in order to validate the effectiveness of BERT models in classifying lifestyle status for all models were evaluated and compared on the developed Gold Standard Corpus (GSC) on the two case studies. RESULTS: The UMLS BERT model achieved the best performance for classifying status of physical activity, with its precision, recall, and F-1 scores of 0.93, 0.93, and 0.92, respectively. Regarding classifying excessive diet, the Bio-clinical BERT model showed the best performance with precision, recall, and F-1 scores of 0.93, 0.93, and 0.93, respectively. CONCLUSION: The proposed approach leveraging weak supervision could significantly increase the sample size, which is required for training the deep learning models. By comparing with the traditional machine learning models, the study also demonstrates the high performance of BERT models for classifying lifestyle status for Alzheimer’s disease in clinical notes. |
---|