Cargando…
Application of Machine Learning in Developing Quantitative Structure–Property Relationship for Electronic Properties of Polyaromatic Compounds
[Image: see text] The degree of π orbital overlap (DPO) model has been demonstrated to be an excellent quantitative structure–property relationship (QSPR) that can map two-dimensional structural information of polycyclic aromatic hydrocarbons (PAHs) and thienoacenes to their electronic properties, n...
Autores principales: | Nguyen, Tuan H., Nguyen, Lam H., Truong, Thanh N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261278/ https://www.ncbi.nlm.nih.gov/pubmed/35811887 http://dx.doi.org/10.1021/acsomega.2c02650 |
Ejemplares similares
-
Machine Learning-Based
Quantitative Structure–Property
Relationships for the Electronic Properties of Cyano Polycyclic Aromatic
Hydrocarbons
por: Nguyen, Tuan H., et al.
Publicado: (2022) -
Atom-Based Machine
Learning Model for Quantitative
Property–Structure Relationship of Electronic Properties of
Fusenes and Substituted Fusenes
por: Nguyen, Tuan H., et al.
Publicado: (2023) -
Quantitative Structure–Property Relationships
for the Electronic Properties of Polycyclic Aromatic Hydrocarbons
por: Nguyen, Lam H., et al.
Publicado: (2018) -
Quantum Mechanical-Based Quantitative Structure–Property
Relationships for Electronic Properties of Two Large Classes of Organic
Semiconductor Materials: Polycyclic Aromatic Hydrocarbons and Thienoacenes
por: Nguyen, Lam H., et al.
Publicado: (2019) -
Intramolecular Phosphacyclization: Polyaromatic Phosphonium P‐Heterocycles with Wide‐Tuning Optical Properties
por: Belyaev, Andrey, et al.
Publicado: (2019)