Cargando…

COVID-19 forecasts using Internet search information in the United States

As the COVID-19 ravaging through the globe, accurate forecasts of the disease spread are crucial for situational awareness, resource allocation, and public health decision-making. Alternative to the traditional disease surveillance data collected by the United States (US) Centers for Disease Control...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Simin, Yang, Shihao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261899/
https://www.ncbi.nlm.nih.gov/pubmed/35798774
http://dx.doi.org/10.1038/s41598-022-15478-y
Descripción
Sumario:As the COVID-19 ravaging through the globe, accurate forecasts of the disease spread are crucial for situational awareness, resource allocation, and public health decision-making. Alternative to the traditional disease surveillance data collected by the United States (US) Centers for Disease Control and Prevention (CDC), big data from Internet such as online search volumes also contain valuable information for tracking infectious disease dynamics such as influenza epidemic. In this study, we develop a statistical model using Internet search volume of relevant queries to track and predict COVID-19 pandemic in the United States. Inspired by the strong association between COVID-19 death trend and symptom-related search queries such as “loss of taste”, we combine search volume information with COVID-19 time series information for US national level forecasts, while leveraging the cross-state cross-resolution spatial temporal framework, pooling information from search volume and COVID-19 reports across regions for state level predictions. Lastly, we aggregate the state-level frameworks in an ensemble fashion to produce the final state-level 4-week forecasts. Our method outperforms the baseline time-series model, while performing reasonably against other publicly available benchmark models for both national and state level forecast.