Cargando…
Sea urchins: an update on their pharmacological properties
Sea urchins are a group of benthic invertebrates characterized by having rigid globose bodies, covered in spines, and have an innate immune system that has allowed them to survive in the environment and defend against many pathogens that affect them. They are consumed for their unique flavor, but al...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261939/ https://www.ncbi.nlm.nih.gov/pubmed/35811815 http://dx.doi.org/10.7717/peerj.13606 |
_version_ | 1784742391082647552 |
---|---|
author | Moreno-García, Dulce María Salas-Rojas, Monica Fernández-Martínez, Eduardo López-Cuellar, Ma del Rocío Sosa-Gutierrez, Carolina G. Peláez-Acero, Armando Rivero-Perez, Nallely Zaragoza-Bastida, Adrian Ojeda-Ramírez, Deyanira |
author_facet | Moreno-García, Dulce María Salas-Rojas, Monica Fernández-Martínez, Eduardo López-Cuellar, Ma del Rocío Sosa-Gutierrez, Carolina G. Peláez-Acero, Armando Rivero-Perez, Nallely Zaragoza-Bastida, Adrian Ojeda-Ramírez, Deyanira |
author_sort | Moreno-García, Dulce María |
collection | PubMed |
description | Sea urchins are a group of benthic invertebrates characterized by having rigid globose bodies, covered in spines, and have an innate immune system that has allowed them to survive in the environment and defend against many pathogens that affect them. They are consumed for their unique flavor, but also for possessing a rich source of bioactive compounds which make them a source for a wide array of medicinal properties. Thus, these may be used to discover and develop new drugs such as anti-bacterials, anti-carcinogenics and anti-virals. Precisely for those reasons, this revision is centered on the known biological activities in various sea urchin species. Recently, the potential pharmacological benefits of nine sea urchin species [Diadema antillarum (Philippi 1845), Echinometra mathaei (de Blainville), Evechinus chloroticus (Valenciennes), Mesocentrotus nudus (Agassiz, 1863), Paracentrotus lividus (Lamarck, 1816), Scaphechinus mirabilis (Agazzis, 1863), Stomopneustes variolaris (Lamarck, 1816), Tripneustes depressus (Agassiz, 1863), and Tripneustes ventricosus (Lamarck, 1816)] have been evaluated. Our work includes a comprehensive review of the anti-fungal, anti-parasitic, anti-inflammatory, hepatoprotective, anti-viral, anti-diabetic, anti-lipidemic, gastro-protective and anti-cardiotoxic effects. Furthermore, we revised the compounds responsible of these pharmacological effects. This work was intended for a broad readership in the fields of pharmacology, drugs and devices, marine biology and aquaculture, fisheries and fish science. Our results suggest that organic extracts, as well as pure compounds obtained from several parts of sea urchin bodies are effective in vitro and in vivo pharmacological models. As such, these properties manifest the potential use of sea urchins to develop emergent active ingredients. |
format | Online Article Text |
id | pubmed-9261939 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92619392022-07-08 Sea urchins: an update on their pharmacological properties Moreno-García, Dulce María Salas-Rojas, Monica Fernández-Martínez, Eduardo López-Cuellar, Ma del Rocío Sosa-Gutierrez, Carolina G. Peláez-Acero, Armando Rivero-Perez, Nallely Zaragoza-Bastida, Adrian Ojeda-Ramírez, Deyanira PeerJ Marine Biology Sea urchins are a group of benthic invertebrates characterized by having rigid globose bodies, covered in spines, and have an innate immune system that has allowed them to survive in the environment and defend against many pathogens that affect them. They are consumed for their unique flavor, but also for possessing a rich source of bioactive compounds which make them a source for a wide array of medicinal properties. Thus, these may be used to discover and develop new drugs such as anti-bacterials, anti-carcinogenics and anti-virals. Precisely for those reasons, this revision is centered on the known biological activities in various sea urchin species. Recently, the potential pharmacological benefits of nine sea urchin species [Diadema antillarum (Philippi 1845), Echinometra mathaei (de Blainville), Evechinus chloroticus (Valenciennes), Mesocentrotus nudus (Agassiz, 1863), Paracentrotus lividus (Lamarck, 1816), Scaphechinus mirabilis (Agazzis, 1863), Stomopneustes variolaris (Lamarck, 1816), Tripneustes depressus (Agassiz, 1863), and Tripneustes ventricosus (Lamarck, 1816)] have been evaluated. Our work includes a comprehensive review of the anti-fungal, anti-parasitic, anti-inflammatory, hepatoprotective, anti-viral, anti-diabetic, anti-lipidemic, gastro-protective and anti-cardiotoxic effects. Furthermore, we revised the compounds responsible of these pharmacological effects. This work was intended for a broad readership in the fields of pharmacology, drugs and devices, marine biology and aquaculture, fisheries and fish science. Our results suggest that organic extracts, as well as pure compounds obtained from several parts of sea urchin bodies are effective in vitro and in vivo pharmacological models. As such, these properties manifest the potential use of sea urchins to develop emergent active ingredients. PeerJ Inc. 2022-07-04 /pmc/articles/PMC9261939/ /pubmed/35811815 http://dx.doi.org/10.7717/peerj.13606 Text en © 2022 Moreno-García et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Marine Biology Moreno-García, Dulce María Salas-Rojas, Monica Fernández-Martínez, Eduardo López-Cuellar, Ma del Rocío Sosa-Gutierrez, Carolina G. Peláez-Acero, Armando Rivero-Perez, Nallely Zaragoza-Bastida, Adrian Ojeda-Ramírez, Deyanira Sea urchins: an update on their pharmacological properties |
title | Sea urchins: an update on their pharmacological properties |
title_full | Sea urchins: an update on their pharmacological properties |
title_fullStr | Sea urchins: an update on their pharmacological properties |
title_full_unstemmed | Sea urchins: an update on their pharmacological properties |
title_short | Sea urchins: an update on their pharmacological properties |
title_sort | sea urchins: an update on their pharmacological properties |
topic | Marine Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261939/ https://www.ncbi.nlm.nih.gov/pubmed/35811815 http://dx.doi.org/10.7717/peerj.13606 |
work_keys_str_mv | AT morenogarciadulcemaria seaurchinsanupdateontheirpharmacologicalproperties AT salasrojasmonica seaurchinsanupdateontheirpharmacologicalproperties AT fernandezmartinezeduardo seaurchinsanupdateontheirpharmacologicalproperties AT lopezcuellarmadelrocio seaurchinsanupdateontheirpharmacologicalproperties AT sosagutierrezcarolinag seaurchinsanupdateontheirpharmacologicalproperties AT pelaezaceroarmando seaurchinsanupdateontheirpharmacologicalproperties AT riveropereznallely seaurchinsanupdateontheirpharmacologicalproperties AT zaragozabastidaadrian seaurchinsanupdateontheirpharmacologicalproperties AT ojedaramirezdeyanira seaurchinsanupdateontheirpharmacologicalproperties |