Cargando…
Groupyr: Sparse Group Lasso in Python
For high-dimensional supervised learning, it is often beneficial to use domain-specific knowledge to improve the performance of statistical learning models. When the problem contains covariates which form groups, researchers can include this grouping information to find parsimonious representations...
Autores principales: | Richie-Halford, Adam, Narayan, Manjari, Simon, Noah, Yeatman, Jason, Rokem, Ariel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262337/ https://www.ncbi.nlm.nih.gov/pubmed/35812695 http://dx.doi.org/10.21105/joss.03024 |
Ejemplares similares
-
Multidimensional analysis and detection of informative features in human brain white matter
por: Richie-Halford, Adam, et al.
Publicado: (2021) -
Seagull: lasso, group lasso and sparse-group lasso regularization for linear regression models via proximal gradient descent
por: Klosa, Jan, et al.
Publicado: (2020) -
A browser-based tool for visualization and analysis of diffusion MRI data
por: Yeatman, Jason D., et al.
Publicado: (2018) -
Sparse Damage Detection with Complex Group Lasso and Adaptive Complex Group Lasso
por: Dimopoulos, Vasileios, et al.
Publicado: (2022) -
Identification of hospital cost drivers using sparse group lasso
por: Swierkowski, Piotr, et al.
Publicado: (2018)