Cargando…
Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans
Starvation resistance is important to disease and fitness, but the genetic basis of its natural variation is unknown. Uncovering the genetic basis of complex, quantitative traits such as starvation resistance is technically challenging. We developed a synthetic-population (re)sequencing approach usi...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262388/ https://www.ncbi.nlm.nih.gov/pubmed/35727141 http://dx.doi.org/10.7554/eLife.80204 |
_version_ | 1784742483762085888 |
---|---|
author | Webster, Amy K Chitrakar, Rojin Powell, Maya Chen, Jingxian Fisher, Kinsey Tanny, Robyn E Stevens, Lewis Evans, Kathryn Wei, Angela Antoshechkin, Igor Andersen, Erik C Baugh, L Ryan |
author_facet | Webster, Amy K Chitrakar, Rojin Powell, Maya Chen, Jingxian Fisher, Kinsey Tanny, Robyn E Stevens, Lewis Evans, Kathryn Wei, Angela Antoshechkin, Igor Andersen, Erik C Baugh, L Ryan |
author_sort | Webster, Amy K |
collection | PubMed |
description | Starvation resistance is important to disease and fitness, but the genetic basis of its natural variation is unknown. Uncovering the genetic basis of complex, quantitative traits such as starvation resistance is technically challenging. We developed a synthetic-population (re)sequencing approach using molecular inversion probes (MIP-seq) to measure relative fitness during and after larval starvation in Caenorhabditis elegans. We applied this competitive assay to 100 genetically diverse, sequenced, wild strains, revealing natural variation in starvation resistance. We confirmed that the most starvation-resistant strains survive and recover from starvation better than the most starvation-sensitive strains using standard assays. We performed genome-wide association (GWA) with the MIP-seq trait data and identified three quantitative trait loci (QTL) for starvation resistance, and we created near isogenic lines (NILs) to validate the effect of these QTL on the trait. These QTL contain numerous candidate genes including several members of the Insulin/EGF Receptor-L Domain (irld) family. We used genome editing to show that four different irld genes have modest effects on starvation resistance. Natural variants of irld-39 and irld-52 affect starvation resistance, and increased resistance of the irld-39; irld-52 double mutant depends on daf-16/FoxO. DAF-16/FoxO is a widely conserved transcriptional effector of insulin/IGF signaling (IIS), and these results suggest that IRLD proteins modify IIS, although they may act through other mechanisms as well. This work demonstrates efficacy of using MIP-seq to dissect a complex trait and it suggests that irld genes are natural modifiers of starvation resistance in C. elegans. |
format | Online Article Text |
id | pubmed-9262388 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-92623882022-07-08 Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans Webster, Amy K Chitrakar, Rojin Powell, Maya Chen, Jingxian Fisher, Kinsey Tanny, Robyn E Stevens, Lewis Evans, Kathryn Wei, Angela Antoshechkin, Igor Andersen, Erik C Baugh, L Ryan eLife Developmental Biology Starvation resistance is important to disease and fitness, but the genetic basis of its natural variation is unknown. Uncovering the genetic basis of complex, quantitative traits such as starvation resistance is technically challenging. We developed a synthetic-population (re)sequencing approach using molecular inversion probes (MIP-seq) to measure relative fitness during and after larval starvation in Caenorhabditis elegans. We applied this competitive assay to 100 genetically diverse, sequenced, wild strains, revealing natural variation in starvation resistance. We confirmed that the most starvation-resistant strains survive and recover from starvation better than the most starvation-sensitive strains using standard assays. We performed genome-wide association (GWA) with the MIP-seq trait data and identified three quantitative trait loci (QTL) for starvation resistance, and we created near isogenic lines (NILs) to validate the effect of these QTL on the trait. These QTL contain numerous candidate genes including several members of the Insulin/EGF Receptor-L Domain (irld) family. We used genome editing to show that four different irld genes have modest effects on starvation resistance. Natural variants of irld-39 and irld-52 affect starvation resistance, and increased resistance of the irld-39; irld-52 double mutant depends on daf-16/FoxO. DAF-16/FoxO is a widely conserved transcriptional effector of insulin/IGF signaling (IIS), and these results suggest that IRLD proteins modify IIS, although they may act through other mechanisms as well. This work demonstrates efficacy of using MIP-seq to dissect a complex trait and it suggests that irld genes are natural modifiers of starvation resistance in C. elegans. eLife Sciences Publications, Ltd 2022-06-21 /pmc/articles/PMC9262388/ /pubmed/35727141 http://dx.doi.org/10.7554/eLife.80204 Text en © 2022, Webster et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Developmental Biology Webster, Amy K Chitrakar, Rojin Powell, Maya Chen, Jingxian Fisher, Kinsey Tanny, Robyn E Stevens, Lewis Evans, Kathryn Wei, Angela Antoshechkin, Igor Andersen, Erik C Baugh, L Ryan Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans |
title | Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans |
title_full | Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans |
title_fullStr | Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans |
title_full_unstemmed | Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans |
title_short | Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans |
title_sort | using population selection and sequencing to characterize natural variation of starvation resistance in caenorhabditis elegans |
topic | Developmental Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262388/ https://www.ncbi.nlm.nih.gov/pubmed/35727141 http://dx.doi.org/10.7554/eLife.80204 |
work_keys_str_mv | AT websteramyk usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT chitrakarrojin usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT powellmaya usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT chenjingxian usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT fisherkinsey usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT tannyrobyne usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT stevenslewis usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT evanskathryn usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT weiangela usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT antoshechkinigor usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT andersenerikc usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans AT baughlryan usingpopulationselectionandsequencingtocharacterizenaturalvariationofstarvationresistanceincaenorhabditiselegans |