Cargando…
PyMVPD: A Toolbox for Multivariate Pattern Dependence
Cognitive tasks engage multiple brain regions. Studying how these regions interact is key to understand the neural bases of cognition. Standard approaches to model the interactions between brain regions rely on univariate statistical dependence. However, newly developed methods can capture multivari...
Autores principales: | Fang, Mengting, Poskanzer, Craig, Anzellotti, Stefano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262406/ https://www.ncbi.nlm.nih.gov/pubmed/35811995 http://dx.doi.org/10.3389/fninf.2022.835772 |
Ejemplares similares
-
Multivariate connectivity: A brief introduction and an open question
por: Fang, Mengting, et al.
Publicado: (2023) -
Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis
por: Li, Yichen, et al.
Publicado: (2019) -
Multivariate pattern dependence
por: Anzellotti, Stefano, et al.
Publicado: (2017) -
PyNeval: A Python Toolbox for Evaluating Neuron Reconstruction Performance
por: Zhang, Han, et al.
Publicado: (2022) -
The PyMVPA BIDS-App: a robust multivariate pattern analysis pipeline for fMRI data
por: Torabian, Sajjad, et al.
Publicado: (2023)