Cargando…
Machine Learning Approaches for Developing Land Cover Mapping
In remote sensing data processing, cover classification on decimeter-level data is a well-studied but tough subject that has been well-documented. The majority of currently existent works make use of orthographic photographs or orthophotos and digital surface models that go with them (DSMs). Urban l...
Autores principales: | Alzahrani, Ali, Kanan, Awos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262539/ https://www.ncbi.nlm.nih.gov/pubmed/35811635 http://dx.doi.org/10.1155/2022/5190193 |
Ejemplares similares
-
Retracted: Machine Learning Approaches for Developing Land Cover Mapping
por: and Biomechanics, Applied Bionics
Publicado: (2023) -
Mapping and monitoring land use land cover dynamics employing Google Earth Engine and machine learning algorithms on Chattogram, Bangladesh
por: Biswas, Jayanta, et al.
Publicado: (2023) -
Cloud-computing and machine learning in support of country-level land cover and ecosystem extent mapping in Liberia and Gabon
por: de Sousa, Celio, et al.
Publicado: (2020) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
por: Sawant, Suraj, et al.
Publicado: (2023) -
A Disease Control-Oriented Land Cover Land Use Map for Myanmar
por: Chen, Dong, et al.
Publicado: (2021)