Cargando…
EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants
Discovering rare cancer driver genes is difficult because their mutational frequency is too low for statistical detection by computational methods. EPIMUTESTR is an integrative nearest-neighbor machine learning algorithm that identifies such marginal genes by modeling the fitness of their mutations...
Autores principales: | Parvandeh, Saeid, Donehower, Lawrence A, Katsonis, Panagiotis, Hsu, Teng-Kuei, Asmussen, Jennifer K, Lee, Kwanghyuk, Lichtarge, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262594/ https://www.ncbi.nlm.nih.gov/pubmed/35412634 http://dx.doi.org/10.1093/nar/gkac215 |
Ejemplares similares
-
Correction to ‘EPIMUTESTR: a nearest neighbor machine learning approach to predict cancer driver genes from the evolutionary action of coding variants’
Publicado: (2022) -
A formal perturbation equation between genotype and phenotype determines the Evolutionary Action of protein-coding variations on fitness
por: Katsonis, Panagiotis, et al.
Publicado: (2014) -
The effects of mismatches on hybridization in DNA microarrays: determination of nearest neighbor parameters
por: Hooyberghs, J., et al.
Publicado: (2009) -
Probing hybridization parameters from microarray experiments: nearest-neighbor model and beyond
por: Hadiwikarta, W. W., et al.
Publicado: (2012) -
Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification
por: Royce, Thomas E., et al.
Publicado: (2007)