Cargando…
Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data
Dimension reduction and (spatial) clustering is usually performed sequentially; however, the low-dimensional embeddings estimated in the dimension-reduction step may not be relevant to the class labels inferred in the clustering step. We therefore developed a computation method, Dimension-Reduction...
Autores principales: | Liu, Wei, Liao, Xu, Yang, Yi, Lin, Huazhen, Yeong, Joe, Zhou, Xiang, Shi, Xingjie, Liu, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262606/ https://www.ncbi.nlm.nih.gov/pubmed/35349708 http://dx.doi.org/10.1093/nar/gkac219 |
Ejemplares similares
-
Using neural networks for reducing the dimensions of single-cell RNA-Seq data
por: Lin, Chieh, et al.
Publicado: (2017) -
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
por: Song, Jia, et al.
Publicado: (2020) -
A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies
por: Shi, Xingjie, et al.
Publicado: (2020) -
Recovery and analysis of transcriptome subsets from pooled single-cell RNA-seq libraries
por: Riemondy, Kent A, et al.
Publicado: (2019) -
SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples
por: Kimes, Patrick K., et al.
Publicado: (2014)