Cargando…

HSP90 and Aha1 modulate microRNA maturation through promoting the folding of Dicer1

Aha1 is a co-chaperone of heat shock protein 90 (HSP90), and it stimulates the ATPase activity of HSP90 to promote the folding of its client proteins. By employing ascorbate peroxidase (APEX)-based proximity labeling and proteomic analysis, we identified over 30 proteins exhibiting diminished abunda...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xiaochuan, Yang, Yen-Yu, Wang, Yinsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262616/
https://www.ncbi.nlm.nih.gov/pubmed/35736213
http://dx.doi.org/10.1093/nar/gkac528
Descripción
Sumario:Aha1 is a co-chaperone of heat shock protein 90 (HSP90), and it stimulates the ATPase activity of HSP90 to promote the folding of its client proteins. By employing ascorbate peroxidase (APEX)-based proximity labeling and proteomic analysis, we identified over 30 proteins exhibiting diminished abundances in the proximity proteome of HSP90 in HEK293T cells upon genetic depletion of Aha1. Dicer1 is a top-ranked protein, and we confirmed its interactions with HSP90 and Aha1 by immunoprecipitation followed by western blot analysis. Genetic depletion of Aha1 and pharmacological inhibition of HSP90 both led to reduced levels of Dicer1 protein. Additionally, HSP90 and Aha1 bind preferentially to newly translated Dicer1. Reconstitution of Aha1-depleted cells with wild-type Aha1 substantially rescued Dicer1 protein level, and a lower level of restoration was observed for complementation with the HSP90-binding-defective Aha1-E67K, whereas an Aha1 mutant lacking the first 20 amino acids—which abolishes its chaperone activity—failed to rescue Dicer1 protein level. Moreover, knockdown of Aha1 and inhibition of HSP90 led to diminished levels of mature microRNAs (miRNAs), but not their corresponding primary miRNAs. Together, we uncovered a novel mechanism of HSP90 and Aha1 in regulating the miRNA pathway through promoting the folding of Dicer1 protein, and we also demonstrated that Aha1 modulates this process by acting as an autonomous chaperone and a co-chaperone for HSP90.