Cargando…

Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates

BACKGROUND: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired a...

Descripción completa

Detalles Bibliográficos
Autores principales: Kochan, Travis J., Nozick, Sophia H., Medernach, Rachel L., Cheung, Bettina H., Gatesy, Samuel W. M., Lebrun-Corbin, Marine, Mitra, Sumitra D., Khalatyan, Natalia, Krapp, Fiorella, Qi, Chao, Ozer, Egon A., Hauser, Alan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263067/
https://www.ncbi.nlm.nih.gov/pubmed/35799130
http://dx.doi.org/10.1186/s12879-022-07558-1
_version_ 1784742643056508928
author Kochan, Travis J.
Nozick, Sophia H.
Medernach, Rachel L.
Cheung, Bettina H.
Gatesy, Samuel W. M.
Lebrun-Corbin, Marine
Mitra, Sumitra D.
Khalatyan, Natalia
Krapp, Fiorella
Qi, Chao
Ozer, Egon A.
Hauser, Alan R.
author_facet Kochan, Travis J.
Nozick, Sophia H.
Medernach, Rachel L.
Cheung, Bettina H.
Gatesy, Samuel W. M.
Lebrun-Corbin, Marine
Mitra, Sumitra D.
Khalatyan, Natalia
Krapp, Fiorella
Qi, Chao
Ozer, Egon A.
Hauser, Alan R.
author_sort Kochan, Travis J.
collection PubMed
description BACKGROUND: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS: We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS: Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS: Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-022-07558-1.
format Online
Article
Text
id pubmed-9263067
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-92630672022-07-08 Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates Kochan, Travis J. Nozick, Sophia H. Medernach, Rachel L. Cheung, Bettina H. Gatesy, Samuel W. M. Lebrun-Corbin, Marine Mitra, Sumitra D. Khalatyan, Natalia Krapp, Fiorella Qi, Chao Ozer, Egon A. Hauser, Alan R. BMC Infect Dis Research Article BACKGROUND: Klebsiella pneumoniae strains have been divided into two major categories: classical K. pneumoniae, which are frequently multidrug-resistant and cause hospital-acquired infections in patients with impaired defenses, and hypervirulent K. pneumoniae, which cause severe community-acquired and disseminated infections in normal hosts. Both types of infections may lead to bacteremia and are associated with significant morbidity and mortality. The relative burden of these two types of K. pneumoniae among bloodstream isolates within the United States is not well understood. METHODS: We evaluated consecutive K. pneumoniae isolates cultured from the blood of hospitalized patients at Northwestern Memorial Hospital (NMH) in Chicago, Illinois between April 2015 and April 2017. Bloodstream isolates underwent whole genome sequencing, and sequence types (STs), capsule loci (KLs), virulence genes, and antimicrobial resistance genes were identified in the genomes using the bioinformatic tools Kleborate and Kaptive. Patient demographic, comorbidity, and infection information, as well as the phenotypic antimicrobial resistance of the isolates were extracted from the electronic health record. Candidate hypervirulent isolates were tested in a murine model of pneumonia, and their plasmids were characterized using long-read sequencing. We also extracted STs, KLs, and virulence and antimicrobial resistance genes from the genomes of bloodstream isolates submitted from 33 United States institutions between 2007 and 2021 to the National Center for Biotechnology Information (NCBI) database. RESULTS: Consecutive K. pneumoniae bloodstream isolates (n = 104, one per patient) from NMH consisted of 75 distinct STs and 51 unique capsule loci. The majority of these isolates (n = 58, 55.8%) were susceptible to all tested antibiotics except ampicillin, but 17 (16.3%) were multidrug-resistant. A total of 32 (30.8%) of these isolates were STs of known high-risk clones, including ST258 and ST45. In particular, 18 (17.3%) were resistant to ceftriaxone (of which 17 harbored extended-spectrum beta-lactamase genes) and 9 (8.7%) were resistant to meropenem (all of which harbored a carbapenemase genes). Four (3.8%) of the 104 isolates were hypervirulent K. pneumoniae, as evidenced by hypermucoviscous phenotypes, high levels of virulence in a murine model of pneumonia, and the presence of large plasmids similar to characterized hypervirulence plasmids. These isolates were cultured from patients who had not recently traveled to Asia. Two of these hypervirulent isolates belonged to the well characterized ST23 lineage and one to the re-emerging ST66 lineage. Of particular concern, two of these isolates contained plasmids with tra conjugation loci suggesting the potential for transmission. We also analyzed 963 publicly available genomes of K. pneumoniae bloodstream isolates from locations within the United States. Of these, 465 (48.3%) and 760 (78.9%) contained extended-spectrum beta-lactamase genes or carbapenemase genes, respectively, suggesting a bias towards submission of antibiotic-resistant isolates. The known multidrug-resistant high-risk clones ST258 and ST307 were the predominant sequence types. A total of 32 (3.3%) of these isolates contained aerobactin biosynthesis genes and 26 (2.7%) contained at least two genetic features of hvKP strains, suggesting elevated levels of virulence. We identified 6 (0.6%) isolates that were STs associated with hvKP: ST23 (n = 4), ST380 (n = 1), and ST65 (n = 1). CONCLUSIONS: Examination of consecutive isolates from a single center demonstrated that multidrug-resistant high-risk clones are indeed common, but a small number of hypervirulent K. pneumoniae isolates were also observed in patients with no recent travel history to Asia, suggesting that these isolates are undergoing community spread in the United States. A larger collection of publicly available bloodstream isolate genomes also suggested that hypervirulent K. pneumoniae strains are present but rare in the USA; however, this collection appears to be heavily biased towards highly antibiotic-resistant isolates (and correspondingly away from hypervirulent isolates). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-022-07558-1. BioMed Central 2022-07-07 /pmc/articles/PMC9263067/ /pubmed/35799130 http://dx.doi.org/10.1186/s12879-022-07558-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Kochan, Travis J.
Nozick, Sophia H.
Medernach, Rachel L.
Cheung, Bettina H.
Gatesy, Samuel W. M.
Lebrun-Corbin, Marine
Mitra, Sumitra D.
Khalatyan, Natalia
Krapp, Fiorella
Qi, Chao
Ozer, Egon A.
Hauser, Alan R.
Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
title Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
title_full Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
title_fullStr Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
title_full_unstemmed Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
title_short Genomic surveillance for multidrug-resistant or hypervirulent Klebsiella pneumoniae among United States bloodstream isolates
title_sort genomic surveillance for multidrug-resistant or hypervirulent klebsiella pneumoniae among united states bloodstream isolates
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263067/
https://www.ncbi.nlm.nih.gov/pubmed/35799130
http://dx.doi.org/10.1186/s12879-022-07558-1
work_keys_str_mv AT kochantravisj genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT nozicksophiah genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT medernachrachell genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT cheungbettinah genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT gatesysamuelwm genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT lebruncorbinmarine genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT mitrasumitrad genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT khalatyannatalia genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT krappfiorella genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT qichao genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT ozeregona genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates
AT hauseralanr genomicsurveillanceformultidrugresistantorhypervirulentklebsiellapneumoniaeamongunitedstatesbloodstreamisolates