Cargando…
Using the Kriging Correlation for unsupervised feature selection problems
This paper proposes a KC Score to measure feature importance in clustering analysis of high-dimensional data. The KC Score evaluates the contribution of features based on the correlation between the original features and the reconstructed features in the low dimensional latent space. A KC Score-base...
Autores principales: | Chua, Cheng-Han, Guo, Meihui, Huang, Shih-Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263137/ https://www.ncbi.nlm.nih.gov/pubmed/35798813 http://dx.doi.org/10.1038/s41598-022-15529-4 |
Ejemplares similares
-
Seeding and Harvest: A Framework for Unsupervised Feature Selection Problems
por: Chen, Gang, et al.
Publicado: (2012) -
Group Based Unsupervised Feature Selection
por: Perera, Kushani, et al.
Publicado: (2020) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021) -
Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction
por: Huang, Ling, et al.
Publicado: (2017) -
Sampling and Kriging Spatial Means: Efficiency and Conditions
por: Wang, Jin-Feng, et al.
Publicado: (2009)