Cargando…
Quantitative determination of environmental factors governing the snow melting: a geodetector case study in the central Tienshan Mountains
Because of the distinctive vertical climate and topography gradients in the alpine region, the snow cover of the Tienshan Mountains possesses complex spatiotemporal heterogeneity, particularly during the melting process. Quantifying the environmental factors is therefore crucial to understanding the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263163/ https://www.ncbi.nlm.nih.gov/pubmed/35799053 http://dx.doi.org/10.1038/s41598-022-15722-5 |
Sumario: | Because of the distinctive vertical climate and topography gradients in the alpine region, the snow cover of the Tienshan Mountains possesses complex spatiotemporal heterogeneity, particularly during the melting process. Quantifying the environmental factors is therefore crucial to understanding the melting process and for predicting and managing snowmelt runoff. Herein, the snow cover area, grain size, and contamination extent were determined to characterize the detailed melting status based on surface reflectance data of MOD09A1 in the central Tienshan Mountains from 2013 to 2017. The environmental factors collected include relief (elevation, slope, and aspect); meteorology (surface air temperature, land surface temperature, solar radiation, and wind speed); and land surface vegetation. Analysis of the geodetector results indicated the following. (1) Patterns of changes in the overall dominant environmental variables were consistent for the pre-, mid-, and post-melting periods defined according to the decline of snow cover area over five years. (2) The overall major environmental factors were wind speed and radiation (pre-period), land surface temperature and elevation (mid-period), and elevation and land surface types (post-period), respectively. (3) Regional distinctions were detected of the dominant environmental factors. In the pre-melting period, the effects of solar radiation and wind speed were noticeable in the north and south regions, respectively. The effects of elevation, land surface temperature, and land cover types became more prominent in all regions during the mid- and post-melting periods. (4) Interaction between the major environmental factors was significantly enhanced on both the overall and regional scales, thus affecting the snow-melting process. Finally, the energy distribution mismatch resulted in the snowmelt. Multiple environmental factors substantially affect heat redistribution at different spatiotemporal scales, resulting in the snowmelt as a complex manifestation of the factors and their interactions. The findings highlight regional differences in various environmental factors of the melting process and offer a theoretical foundation for the melting process at various scales over multiple years. |
---|