Cargando…
Application of Extremely Randomised Trees for exploring influential factors on variant crash severity data
Crash severity models play a crucial role in evaluating the influencing factors in the severity of traffic crashes. In this study, Extremely Randomised Tree (ERT) is used as a machine learning technique to analyse the severity of crashes. The crash data in the province of Khorasan Razavi, Iran, for...
Autores principales: | Afshar, Farshid, Seyedabrishami, Seyedehsan, Moridpour, Sara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263179/ https://www.ncbi.nlm.nih.gov/pubmed/35798814 http://dx.doi.org/10.1038/s41598-022-15693-7 |
Ejemplares similares
-
Identifying high crash risk segments in rural roads using ensemble decision tree-based models
por: Iranmanesh, Maryam, et al.
Publicado: (2022) -
Exploring the effects of stationary camera spots on inferences drawn from real-time crash severity models
por: Abdi, Amirhossein, et al.
Publicado: (2022) -
Factors related to severe single-vehicle tree crashes: In-depth crash study
por: Bucsuházy, Kateřina, et al.
Publicado: (2022) -
Influential Factors Associated with Consecutive Crash Severity: A Two-Level Logistic Modeling Approach
por: Meng, Fanyu, et al.
Publicado: (2020) -
Crash data integration for road safety analysis in Iran
por: Afshar, Ali
Publicado: (2019)