Cargando…
Designing for Confidence: The Impact of Visualizing Artificial Intelligence Decisions
Explainable artificial intelligence aims to bring transparency to artificial intelligence (AI) systems by translating, simplifying, and visualizing its decisions. While society remains skeptical about AI systems, studies show that transparent and explainable AI systems can help improve the Human-AI...
Autores principales: | Karran, Alexander John, Demazure, Théophile, Hudon, Antoine, Senecal, Sylvain, Léger, Pierre-Majorique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263374/ https://www.ncbi.nlm.nih.gov/pubmed/35812230 http://dx.doi.org/10.3389/fnins.2022.883385 |
Ejemplares similares
-
Toward a Hybrid Passive BCI for the Modulation of Sustained Attention Using EEG and fNIRS
por: Karran, Alexander J., et al.
Publicado: (2019) -
Attentional and Behavioral Disengagement as Coping Responses to Technostress and Financial Stress: An Experiment Based on Psychophysiological, Perceptual, and Behavioral Data
por: Korosec-Serfaty, Marion, et al.
Publicado: (2022) -
Dynamic Threshold Selection for a Biocybernetic Loop in an Adaptive Video Game Context
por: Labonte-Lemoyne, Elise, et al.
Publicado: (2018) -
Is there collaboration specific neurophysiological activation during collaborative task activity? An analysis of brain responses using electroencephalography and hyperscanning
por: Léné, Paul, et al.
Publicado: (2021) -
Emotional Reactions and Likelihood of Response to Questions Designed for a Mental Health Chatbot Among Adolescents: Experimental Study
por: Mariamo, Audrey, et al.
Publicado: (2021)