Cargando…

Detection of COVID-19 using deep learning techniques and classification methods

Since the patient is not quarantined during the conclusion of the Polymerase Chain Reaction (PCR) test used in the diagnosis of COVID-19, the disease continues to spread. In this study, it was aimed to reduce the duration and amount of transmission of the disease by shortening the diagnosis time of...

Descripción completa

Detalles Bibliográficos
Autores principales: Oğuz, Çinare, Yağanoğlu, Mete
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263717/
https://www.ncbi.nlm.nih.gov/pubmed/35821878
http://dx.doi.org/10.1016/j.ipm.2022.103025
Descripción
Sumario:Since the patient is not quarantined during the conclusion of the Polymerase Chain Reaction (PCR) test used in the diagnosis of COVID-19, the disease continues to spread. In this study, it was aimed to reduce the duration and amount of transmission of the disease by shortening the diagnosis time of COVID-19 patients with the use of Computed Tomography (CT). In addition, it is aimed to provide a decision support system to radiologists in the diagnosis of COVID-19. In this study, deep features were extracted with deep learning models such as ResNet-50, ResNet-101, AlexNet, Vgg-16, Vgg-19, GoogLeNet, SqueezeNet, Xception on 1345 CT images obtained from the radiography database of Siirt Education and Research Hospital. These deep features are given to classification methods such as Support Vector Machine (SVM), k Nearest Neighbor (kNN), Random Forest (RF), Decision Trees (DT), Naive Bayes (NB), and their performance is evaluated with test images. Accuracy value, F1-score and ROC curve were considered as success criteria. According to the data obtained as a result of the application, the best performance was obtained with ResNet-50 and SVM method. The accuracy was 96.296%, the F1-score was 95.868%, and the AUC value was 0.9821. The deep learning model and classification method examined in this study and found to be high performance can be used as an auxiliary decision support system by preventing unnecessary tests for COVID-19 disease.