Cargando…
Forecasting and classification of new cases of COVID 19 before vaccination using decision trees and Gaussian mixture model
Regarding the pandemic taking place in the world from the spread of the Coronavirus pandemic and viral mutations, the need has arisen to analyze the epidemic data in terms of numbers of infected and deaths, different geographical regions, and the dynamics of the spread of the virus. In China, the to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263718/ http://dx.doi.org/10.1016/j.aej.2022.07.011 |
Sumario: | Regarding the pandemic taking place in the world from the spread of the Coronavirus pandemic and viral mutations, the need has arisen to analyze the epidemic data in terms of numbers of infected and deaths, different geographical regions, and the dynamics of the spread of the virus. In China, the total number of reported infections is 224,659 on June 11, 2022. In this paper, the Gaussian Mixture Model and the decision tree method were used to classify and predict new cases of the virus. Although we focus mainly on the Chinese case, the model is general and adapted to any context without loss of validity of the qualitative results. The Chi-Squared ([Formula: see text] (2)) Automatic Interaction Detection (CHAID) was applied in creating the decision tree structure, the data has been classified into five classes, according to the BIC criterion. The best mixture model is the E (Equal variance) with five components. The considered data sets of the world health organization (WHO) were used from January 5, 2020, to 12, November 2021. We provide numerical results based on the Chinese case. |
---|