Cargando…

Transcriptome sequencing analysis revealed the molecular mechanism of podoplanin neutralization inhibiting ischemia/reperfusion-induced microglial activation

BACKGROUND: Anti-podoplanin antibody (α-PDPN, clone 8.1.1) reduces microglia-mediated inflammation and decreases cerebral infarct volume in mice with stroke. However, the molecular mechanism by which this occurs is unknown. This study sought to systematically analyze the molecular mechanism of α-PDP...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Shuang, Qian, Lei, Yang, Ye, Cui, Jie, Zhao, Yiming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263778/
https://www.ncbi.nlm.nih.gov/pubmed/35813319
http://dx.doi.org/10.21037/atm-22-1952
Descripción
Sumario:BACKGROUND: Anti-podoplanin antibody (α-PDPN, clone 8.1.1) reduces microglia-mediated inflammation and decreases cerebral infarct volume in mice with stroke. However, the molecular mechanism by which this occurs is unknown. This study sought to systematically analyze the molecular mechanism of α-PDPN treatment on ischemia/reperfusion (I/R)-injured microglia. METHODS: Microglia BV2 cells were pre-cultured with α-PDPN and then exposed to oxygen-glucose deprivation and reoxygenation (OGD-R) insult. The differentially expressed genes (DEGs) underwent a transcriptome sequencing technology analysis, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Quantitative real-time polymerase chain reaction (PCR) was performed to confirm the transcriptional expression of some DEGs. RESULTS: The results showed that α-PDPN downregulated 338 genes and upregulated 340 genes in the BV2 cells. The GO items of the downregulated DEGs mainly involved biological processes, such as the response to the interferon (IFN), lipopolysaccharide-mediated signaling pathway, and the regulation of cell chemotaxis and migration. The upregulated molecular function mainly involved glucocorticoid-receptor binding. Further, the KEGG pathway analysis indicated that the enriched categories for the upregulated DEGs mainly involved the adenosine triphosphate (ATP) binding cassette transporters. However, the interleukin-17 signaling pathway, IFN signaling pathway, tumor necrosis factor signaling pathway, transforming growth factor beta (TGF-ꞵ) signaling pathway, nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, cytokine-cytokine receptor interaction, and chemokine signaling pathway were downregulated by the α-PDPN treatment. CONCLUSIONS: Numerous inflammation-related signaling pathways were regulated by the α-PDPN treatment in the OGD-R injured BV2 cells. This study provided further insights into the protective mechanism of α-PDPN treatment in ischemic stroke.