Cargando…
Model-Based and Model-Free Replay Mechanisms for Reinforcement Learning in Neurorobotics
Experience replay is widely used in AI to bootstrap reinforcement learning (RL) by enabling an agent to remember and reuse past experiences. Classical techniques include shuffled-, reversed-ordered- and prioritized-memory buffers, which have different properties and advantages depending on the natur...
Autores principales: | Massi, Elisa, Barthélemy, Jeanne, Mailly, Juliane, Dromnelle, Rémi, Canitrot, Julien, Poniatowski, Esther, Girard, Benoît, Khamassi, Mehdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263850/ https://www.ncbi.nlm.nih.gov/pubmed/35812782 http://dx.doi.org/10.3389/fnbot.2022.864380 |
Ejemplares similares
-
Editorial: Neurorobotics explores the human senses
por: Khamassi, Mehdi, et al.
Publicado: (2023) -
Neurorobotic reinforcement learning for domains with parametrical uncertainty
por: Amaya, Camilo, et al.
Publicado: (2023) -
Modeling choice and reaction time during arbitrary visuomotor learning through the coordination of adaptive working memory and reinforcement learning
por: Viejo, Guillaume, et al.
Publicado: (2015) -
Design Principles for Neurorobotics
por: Krichmar, Jeffrey L., et al.
Publicado: (2022) -
Neurorobotic Models of Neurological Disorders: A Mini Review
por: Pronin, Savva, et al.
Publicado: (2021)