Cargando…

Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers

BACKGROUND: T-cell receptor-engineered T cells (TCR-Ts) have achieved encouraging success in anticancer clinical trials. The antigenic targets, however, were primarily focused on human leukocyte antigen (HLA) A*02:01 restricted epitopes from a few cancer/testis antigens (CTAs) which are not widely e...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qingyang, Hu, Wei, Liao, Baoyi, Song, Chanchan, Li, Liangping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9263944/
https://www.ncbi.nlm.nih.gov/pubmed/35798537
http://dx.doi.org/10.1136/jitc-2022-004713
Descripción
Sumario:BACKGROUND: T-cell receptor-engineered T cells (TCR-Ts) have achieved encouraging success in anticancer clinical trials. The antigenic targets, however, were primarily focused on human leukocyte antigen (HLA) A*02:01 restricted epitopes from a few cancer/testis antigens (CTAs) which are not widely expressed in common solid cancers; the tested T-cell receptors (TCRs) were frequently from tumor-infiltrating lymphocytes of old patients and were not assured to have higher avidity. Here, we propose the isolation of high-avidity TCRs against CTAs that are frequently expressed in common solid cancers. METHODS: We selected the CT83 protein, which is frequently expressed in common solid cancers, as a model antigen for screening of its specific TCR. The predicted CT83 epitopes with strong or weak binding to HLA-I molecules, popular in the Chinese population, were integrated into three synthetic long peptides. CT83 reactive CD8+ T cells were stimulated with peptide-loaded dendritic cells (DCs) and sorted using the CD137 biomarker for single-cell sequencing to obtain the paired TCRαβ sequence. The higher frequency TCRs were reconstructed for characterization of the CT83 epitope and for assessment of in vitro and in vivo antitumor activities. RESULTS: CT83 reactive T cells from young healthy donors (YHDs) were generated by repeated stimulation with DCs and peptides. The single-cell TCR sequencing results of reactive T cells indicated that a single TCR clonotype dominated the paired TCRs. T cells engineered with this dominant TCR led to HLA-A*11:01-restricted recognition of the CT83(14-22) epitope, with higher avidity. Functional assays showed powerful cytotoxicity in vitro against the targets of several CT83-positive solid cancer cell lines. Furthermore, TCR-Ts showed therapeutic efficacy in three xenograft solid tumor models. The meta-analysis of gene expression of 92 CTAs indicated that most CTAs did not or at low levels in the thymus, which suggested that those CTAs may experience incomplete thymic central tolerance. CONCLUSIONS: High-avidity TCR against CT83 could be isolated from YHDs and efficiently mediate regression of well-established xenograft common solid tumors. The high-avidity TCR repertoire in the peripheral blood of some donors for CT83 and other CTAs provides the basis for the efficient isolation of high-avidity TCRs to target numerous solid cancers.