Cargando…

Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain

[Image: see text] Synaptic dysfunction and loss occur in Alzheimer’s disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are...

Descripción completa

Detalles Bibliográficos
Autores principales: Podvin, Sonia, Jiang, Zhenze, Boyarko, Ben, Rossitto, Leigh-Ana, O’Donoghue, Anthony, Rissman, Robert A., Hook, Vivian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264367/
https://www.ncbi.nlm.nih.gov/pubmed/35758417
http://dx.doi.org/10.1021/acschemneuro.2c00222
_version_ 1784742961957830656
author Podvin, Sonia
Jiang, Zhenze
Boyarko, Ben
Rossitto, Leigh-Ana
O’Donoghue, Anthony
Rissman, Robert A.
Hook, Vivian
author_facet Podvin, Sonia
Jiang, Zhenze
Boyarko, Ben
Rossitto, Leigh-Ana
O’Donoghue, Anthony
Rissman, Robert A.
Hook, Vivian
author_sort Podvin, Sonia
collection PubMed
description [Image: see text] Synaptic dysfunction and loss occur in Alzheimer’s disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are hypothesized to differ in human AD brain compared to age-matched controls, achieved by global neuropeptidomics analysis of human brain cortex synaptosomes. Neuropeptidomics demonstrated distinct profiles of neuropeptides in AD compared to controls consisting of neuropeptides derived from chromogranin A (CHGA) and granins, VGF (nerve growth factor inducible), cholecystokinin, and others. The differential neuropeptide signatures indicated differences in proteolytic processing of their proneuropeptides. Analysis of cleavage sites showed that dibasic residues at the N-termini and C-termini of neuropeptides were the main sites for proneuropeptide processing, and data also showed that the AD group displayed differences in preferred residues adjacent to the cleavage sites. Notably, tau peptide signatures differed in the AD compared to age-matched control human brain cortex synaptosomes. Unique tau peptides were derived from the tau protein through proteolysis using similar and differential cleavage sites in the AD brain cortex compared to the control. Protease profiles differed in the AD compared to control, indicated by proteomics data. Overall, these results demonstrate that dysregulation of neuropeptides and tau peptides occurs in AD brain cortex synaptosomes compared to age-matched controls, involving differential cleavage site properties for proteolytic processing of precursor proteins. These dynamic changes in neuropeptides and tau peptide signatures may be associated with the severe cognitive deficits of AD.
format Online
Article
Text
id pubmed-9264367
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-92643672022-07-09 Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain Podvin, Sonia Jiang, Zhenze Boyarko, Ben Rossitto, Leigh-Ana O’Donoghue, Anthony Rissman, Robert A. Hook, Vivian ACS Chem Neurosci [Image: see text] Synaptic dysfunction and loss occur in Alzheimer’s disease (AD) brains, which results in cognitive deficits and brain neurodegeneration. Neuropeptides comprise the major group of synaptic neurotransmitters in the nervous system. This study evaluated neuropeptide signatures that are hypothesized to differ in human AD brain compared to age-matched controls, achieved by global neuropeptidomics analysis of human brain cortex synaptosomes. Neuropeptidomics demonstrated distinct profiles of neuropeptides in AD compared to controls consisting of neuropeptides derived from chromogranin A (CHGA) and granins, VGF (nerve growth factor inducible), cholecystokinin, and others. The differential neuropeptide signatures indicated differences in proteolytic processing of their proneuropeptides. Analysis of cleavage sites showed that dibasic residues at the N-termini and C-termini of neuropeptides were the main sites for proneuropeptide processing, and data also showed that the AD group displayed differences in preferred residues adjacent to the cleavage sites. Notably, tau peptide signatures differed in the AD compared to age-matched control human brain cortex synaptosomes. Unique tau peptides were derived from the tau protein through proteolysis using similar and differential cleavage sites in the AD brain cortex compared to the control. Protease profiles differed in the AD compared to control, indicated by proteomics data. Overall, these results demonstrate that dysregulation of neuropeptides and tau peptides occurs in AD brain cortex synaptosomes compared to age-matched controls, involving differential cleavage site properties for proteolytic processing of precursor proteins. These dynamic changes in neuropeptides and tau peptide signatures may be associated with the severe cognitive deficits of AD. American Chemical Society 2022-06-27 /pmc/articles/PMC9264367/ /pubmed/35758417 http://dx.doi.org/10.1021/acschemneuro.2c00222 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Podvin, Sonia
Jiang, Zhenze
Boyarko, Ben
Rossitto, Leigh-Ana
O’Donoghue, Anthony
Rissman, Robert A.
Hook, Vivian
Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain
title Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain
title_full Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain
title_fullStr Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain
title_full_unstemmed Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain
title_short Dysregulation of Neuropeptide and Tau Peptide Signatures in Human Alzheimer’s Disease Brain
title_sort dysregulation of neuropeptide and tau peptide signatures in human alzheimer’s disease brain
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264367/
https://www.ncbi.nlm.nih.gov/pubmed/35758417
http://dx.doi.org/10.1021/acschemneuro.2c00222
work_keys_str_mv AT podvinsonia dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain
AT jiangzhenze dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain
AT boyarkoben dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain
AT rossittoleighana dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain
AT odonoghueanthony dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain
AT rissmanroberta dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain
AT hookvivian dysregulationofneuropeptideandtaupeptidesignaturesinhumanalzheimersdiseasebrain