Cargando…
Blood–brain barrier penetration prediction enhanced by uncertainty estimation
Blood–brain barrier is a pivotal factor to be considered in the process of central nervous system (CNS) drug development, and it is of great significance to rapidly explore the blood–brain barrier permeability (BBBp) of compounds in silico in early drug discovery process. Here, we focus on whether a...
Autores principales: | Tong, Xiaochu, Wang, Dingyan, Ding, Xiaoyu, Tan, Xiaoqin, Ren, Qun, Chen, Geng, Rong, Yu, Xu, Tingyang, Huang, Junzhou, Jiang, Hualiang, Zheng, Mingyue, Li, Xutong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264551/ https://www.ncbi.nlm.nih.gov/pubmed/35799215 http://dx.doi.org/10.1186/s13321-022-00619-2 |
Ejemplares similares
-
A hybrid framework for improving uncertainty quantification in deep learning-based QSAR regression modeling
por: Wang, Dingyan, et al.
Publicado: (2021) -
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
por: Wan, Xiaozhe, et al.
Publicado: (2022) -
Drug repurposing against breast cancer by integrating drug-exposure expression profiles and drug–drug links based on graph neural network
por: Cui, Chen, et al.
Publicado: (2021) -
Uncertainty quantification: Can we trust artificial intelligence in drug discovery?
por: Yu, Jie, et al.
Publicado: (2022) -
Tora3D: an autoregressive torsion angle prediction model for molecular 3D conformation generation
por: Zhang, Zimei, et al.
Publicado: (2023)