Cargando…

Saturation-pulse prepared heart-rate independent inversion-recovery (SAPPHIRE) biventricular T1 mapping: inter-field strength, head-to-head comparison of diastolic, systolic and dark-blood measurements

BACKGROUND: To assess the feasibility of biventricular SAPPHIRE T(1) mapping in vivo across field strengths using diastolic, systolic and dark-blood (DB) approaches. METHODS: 10 healthy volunteers underwent same-day non-contrast cardiovascular magnetic resonance at 1.5 Tesla (T) and 3 T. Left and ri...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfarih, Mashael, Augusto, João B., Knott, Kristopher D., Fatih, Nasri, Kumar, M. Praveen, Boubertakh, Redha, Hughes, Alun D., Moon, James C., Weingärtner, Sebastian, Captur, Gabriella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264718/
https://www.ncbi.nlm.nih.gov/pubmed/35799139
http://dx.doi.org/10.1186/s12880-022-00843-0
Descripción
Sumario:BACKGROUND: To assess the feasibility of biventricular SAPPHIRE T(1) mapping in vivo across field strengths using diastolic, systolic and dark-blood (DB) approaches. METHODS: 10 healthy volunteers underwent same-day non-contrast cardiovascular magnetic resonance at 1.5 Tesla (T) and 3 T. Left and right ventricular (LV, RV) T(1) mapping was performed in the basal, mid and apical short axis using 4-variants of SAPPHIRE: diastolic, systolic, 0th and 2nd order motion-sensitized DB and conventional modified Look-Locker inversion recovery (MOLLI). RESULTS: LV global myocardial T(1) times (1.5 T then 3 T results) were significantly longer by diastolic SAPPHIRE (1283 ± 11|1600 ± 17 ms) than any of the other SAPPHIRE variants: systolic (1239 ± 9|1595 ± 13 ms), 0th order DB (1241 ± 10|1596 ± 12) and 2nd order DB (1251 ± 11|1560 ± 20 ms, all p < 0.05). In the mid septum MOLLI and diastolic SAPPHIRE exhibited significant T(1) signal contamination (longer T(1)) at the blood-myocardial interface not seen with the other 3 SAPPHIRE variants (all p < 0.025). Additionally, systolic, 0th order and 2nd order DB SAPPHIRE showed narrower dispersion of myocardial T(1) times across the mid septum when compared to diastolic SAPPHIRE (interquartile ranges respectively: 25 ms, 71 ms, 73 ms vs 143 ms, all p < 0.05). RV T(1) mapping was achievable using systolic, 0th and 2nd order DB SAPPHIRE but not with MOLLI or diastolic SAPPHIRE. All 4 SAPPHIRE variants showed excellent re-read reproducibility (intraclass correlation coefficients 0.953 to 0.996). CONCLUSION: These small-scale preliminary healthy volunteer data suggest that DB SAPPHIRE has the potential to reduce partial volume effects at the blood-myocardial interface, and that systolic SAPPHIRE could be a feasible solution for right ventricular T(1) mapping. Further work is needed to understand the robustness of these sequences and their potential clinical utility. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12880-022-00843-0.