Cargando…
Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters
SIMPLE SUMMARY: In patients with adnexal masses, classification into benign or malignant tumors is essential for optimal treatment planning, but remains challenging. In the search for new models applicable in a routine clinical setting, we compared classical single parameters to multiparameter predi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264825/ https://www.ncbi.nlm.nih.gov/pubmed/35804981 http://dx.doi.org/10.3390/cancers14133210 |
_version_ | 1784743050040311808 |
---|---|
author | Reiser, Elisabeth Pils, Dietmar Grimm, Christoph Hoffmann, Ines Polterauer, Stephan Kranawetter, Marlene Aust, Stefanie |
author_facet | Reiser, Elisabeth Pils, Dietmar Grimm, Christoph Hoffmann, Ines Polterauer, Stephan Kranawetter, Marlene Aust, Stefanie |
author_sort | Reiser, Elisabeth |
collection | PubMed |
description | SIMPLE SUMMARY: In patients with adnexal masses, classification into benign or malignant tumors is essential for optimal treatment planning, but remains challenging. In the search for new models applicable in a routine clinical setting, we compared classical single parameters to multiparameter predictive models. ABSTRACT: Discrimination between benign and malignant adnexal masses is essential for optimal treatment planning, but still remains challenging in a routine clinical setting. In this retrospective study, we aimed to compare albumin as a single parameter to calculate models by analyzing laboratory parameters of 1552 patients with an adnexal mass (epithelial ovarian cancer (EOC): n= 294; borderline tumor of the ovary (BTO): n = 66; benign adnexal mass: n = 1192) undergoing surgery. Models comprising classical laboratory parameters show better accuracies (AUCs 0.92–0.93; 95% CI 0.90–0.95) compared to the use of single markers, and could easily be implemented in clinical practice by containing only readily available markers. This has been incorporated into a nomogram. |
format | Online Article Text |
id | pubmed-9264825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-92648252022-07-09 Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters Reiser, Elisabeth Pils, Dietmar Grimm, Christoph Hoffmann, Ines Polterauer, Stephan Kranawetter, Marlene Aust, Stefanie Cancers (Basel) Article SIMPLE SUMMARY: In patients with adnexal masses, classification into benign or malignant tumors is essential for optimal treatment planning, but remains challenging. In the search for new models applicable in a routine clinical setting, we compared classical single parameters to multiparameter predictive models. ABSTRACT: Discrimination between benign and malignant adnexal masses is essential for optimal treatment planning, but still remains challenging in a routine clinical setting. In this retrospective study, we aimed to compare albumin as a single parameter to calculate models by analyzing laboratory parameters of 1552 patients with an adnexal mass (epithelial ovarian cancer (EOC): n= 294; borderline tumor of the ovary (BTO): n = 66; benign adnexal mass: n = 1192) undergoing surgery. Models comprising classical laboratory parameters show better accuracies (AUCs 0.92–0.93; 95% CI 0.90–0.95) compared to the use of single markers, and could easily be implemented in clinical practice by containing only readily available markers. This has been incorporated into a nomogram. MDPI 2022-06-30 /pmc/articles/PMC9264825/ /pubmed/35804981 http://dx.doi.org/10.3390/cancers14133210 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Reiser, Elisabeth Pils, Dietmar Grimm, Christoph Hoffmann, Ines Polterauer, Stephan Kranawetter, Marlene Aust, Stefanie Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters |
title | Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters |
title_full | Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters |
title_fullStr | Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters |
title_full_unstemmed | Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters |
title_short | Defining Models to Classify between Benign and Malignant Adnexal Masses Using Routine Laboratory Parameters |
title_sort | defining models to classify between benign and malignant adnexal masses using routine laboratory parameters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264825/ https://www.ncbi.nlm.nih.gov/pubmed/35804981 http://dx.doi.org/10.3390/cancers14133210 |
work_keys_str_mv | AT reiserelisabeth definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters AT pilsdietmar definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters AT grimmchristoph definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters AT hoffmannines definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters AT polterauerstephan definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters AT kranawettermarlene definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters AT auststefanie definingmodelstoclassifybetweenbenignandmalignantadnexalmassesusingroutinelaboratoryparameters |