Cargando…
Artificial Intelligence-Based Prognostic Model for Urologic Cancers: A SEER-Based Study
SIMPLE SUMMARY: We describe a risk profile reconstruction model for cancer-specific survival estimation for continuous time points after urologic cancer diagnosis. We used artificial intelligence (AI)-based algorithms, a national cancer registry data, and accessible clinical parameters for the risk-...
Autores principales: | Eminaga, Okyaz, Shkolyar, Eugene, Breil, Bernhard, Semjonow, Axel, Boegemann, Martin, Xing, Lei, Tinay, Ilker, Liao, Joseph C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264864/ https://www.ncbi.nlm.nih.gov/pubmed/35804904 http://dx.doi.org/10.3390/cancers14133135 |
Ejemplares similares
-
Conceptual Framework and Documentation Standards of Cystoscopic Media Content for Artificial Intelligence
por: Eminaga, Okyaz, et al.
Publicado: (2023) -
Dynamic changes of alkaline phosphatase are strongly associated with PSA-decline and predict best clinical benefit earlier than PSA-changes under therapy with abiraterone acetate in bone metastatic castration resistant prostate cancer
por: Mikah, Phillip, et al.
Publicado: (2016) -
CMDX©-based single source information system for simplified quality management and clinical research in prostate cancer
por: Eminaga, Okyaz, et al.
Publicado: (2012) -
Artificial Intelligence Reveals Distinct Prognostic Subgroups of Muscle-Invasive Bladder Cancer on Histology Images
por: Eminaga, Okyaz, et al.
Publicado: (2023) -
Clinical map document based on XML (cMDX): document architecture with mapping feature for reporting and analysing prostate cancer in radical prostatectomy specimens
por: Eminaga, Okyaz, et al.
Publicado: (2010)