Cargando…
Identifying Lethal Dependencies with HUGE Predictive Power
SIMPLE SUMMARY: This work shows that the predictions of lethal dependencies (LEDs) between genes can be dramatically improved by incorporating the “HUb effect in Genetic Essentiality” (HUGE) of gene alterations. In three genome-wide loss-of-function screens—Project Score, CERES score and DEMETER sco...
Autores principales: | Gimeno, Marian, San José-Enériz, Edurne, Rubio, Angel, Garate, Leire, Miranda, Estíbaliz, Castilla, Carlos, Agirre, Xabier, Prosper, Felipe, Carazo, Fernando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264916/ https://www.ncbi.nlm.nih.gov/pubmed/35805023 http://dx.doi.org/10.3390/cancers14133251 |
Ejemplares similares
-
An in-silico approach to predict and exploit synthetic lethality in cancer metabolism
por: Apaolaza, Iñigo, et al.
Publicado: (2017) -
Explainable artificial intelligence for precision medicine in acute myeloid leukemia
por: Gimeno, Marian, et al.
Publicado: (2022) -
In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer
por: Pey, Jon, et al.
Publicado: (2017) -
A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism
por: Apaolaza, Iñigo, et al.
Publicado: (2022) -
HDAC Inhibitors in Acute Myeloid Leukemia
por: San José-Enériz, Edurne, et al.
Publicado: (2019)