Cargando…

Ground Reaction Forces and Center of Pressure within the Paws When Stepping over Obstacles in Dogs

SIMPLE SUMMARY: Physical therapy and rehabilitation are emerging in veterinary medicine, and more research is needed to understand the effect of various exercises on kinematics and kinetics in animals. This will allow the animal physiotherapist to best utilize these exercises as a therapeutic and ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Charalambous, Danae, Strasser, Therese, Tichy, Alexander, Bockstahler, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9264929/
https://www.ncbi.nlm.nih.gov/pubmed/35804600
http://dx.doi.org/10.3390/ani12131702
Descripción
Sumario:SIMPLE SUMMARY: Physical therapy and rehabilitation are emerging in veterinary medicine, and more research is needed to understand the effect of various exercises on kinematics and kinetics in animals. This will allow the animal physiotherapist to best utilize these exercises as a therapeutic and even diagnostic tool. Walking over obstacles is a typical canine physiotherapy exercise; however, no studies investigating the kinetics have been conducted. The present study showed significant changes in ground reaction forces and center of pressure in dogs walking over obstacles compared to normal walking. This can reflect a challenge that the animals have to overcome in order to perform this exercise. The data can be used for further studies in diseased animals or in the future as a diagnostic tool. ABSTRACT: Walking over obstacles is a widely used physiotherapy exercise in dogs. Current research is limited to the effect of this exercise in kinematics and muscle activation in dogs. The present study assessed the influence of walking over obstacles on the ground reaction forces (GRFs) and center of pressure (COP) in dogs. Data of dogs walking over one and two obstacles over a pressure platform were retrospectively analyzed and compared to normal walking. Walking over one obstacle did not affect the GRFs and COP of the forelimbs; however, significant changes were observed for the hindlimbs, especially the leading hindlimb. Walking over two obstacles caused significant changes to only one value at the forelimbs, whereas multiple significant changes in the GRFs and COP values were observed at the hindlimbs. Walking over obstacles seems to be challenging even for healthy adult dogs. Further studies are needed to investigate how different heights of obstacles and distances between them can further challenge the animals. The combination of kinetics and kinematics during walking over obstacles may be used in future as a diagnostic tool in geriatric and neurological patients in order to assess their proprioception awareness or to assess the improvement after an intervention, e.g., physiotherapy treatment.